Spaces:
Runtime error
Runtime error
File size: 8,587 Bytes
8c7c98a 5d76928 8c7c98a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
"""
ai_single_response.py
An executable way to call the model. example:
*\gpt2_chatbot> python .\ai_single_response.py --prompt "where is the grocery store?" --time
extended-summary:
A system and method for interacting with a virtual machine using a series of messages , each message having associated otherwise one or more actions to be taken by the machine. The speaker participates in a chat with a responder , and the response from the responder is returned.
"""
import argparse
import pprint as pp
import time
import warnings
from datetime import datetime
from pathlib import Path
from cleantext import clean
warnings.filterwarnings(action="ignore", message=".*gradient_checkpointing*")
from aitextgen import aitextgen
def query_gpt_model(
folder_path,
prompt_msg: str,
speaker=None,
responder="person beta",
kparam=150,
temp=0.75,
top_p=0.65,
verbose=False,
use_gpu=False,
):
"""
query_gpt_model [pass a prompt in to model, get a response. Does NOT "remember" past conversation]
Args:
folder_path ([type]): [description]
prompt_msg (str): [description]
speaker ([type], optional): [description]. Defaults to None.
responder (str, optional): [description]. Defaults to "person beta".
kparam (int, optional): [description]. Defaults to 125.
temp (float, optional): [description]. Defaults to 0.75.
top_p (float, optional): [description]. Defaults to 0.65.
verbose (bool, optional): [description]. Defaults to False.
use_gpu (bool, optional): [description]. Defaults to False.
Returns:
[dict]: [returns a dict with A) just model response as str B) total conversation]
"""
ai = aitextgen(
model="r3dhummingbird/DialoGPT-medium-joshua",
#model_folder=folder_path,
to_gpu=False,
)
print("loaded model")
p_list = []
if "natqa" in str(folder_path).lower():
speaker = "person alpha" # manual correction
responder = "person beta"
if "wow" in str(folder_path).lower():
speaker = "person alpha" # manual correction
responder = "person beta"
if "peter" in str(folder_path).lower():
speaker = None # manual correction
responder = "peter szemraj"
if speaker is not None:
p_list.append(speaker.lower() + ":" + "\n") # write prompt as the speaker
p_list.append(prompt_msg.lower() + "\n")
p_list.append("\n")
p_list.append(responder.lower() + ":" + "\n")
this_prompt = "".join(p_list)
if verbose:
print("overall prompt:\n")
pp.pprint(this_prompt, indent=4)
print("\n... generating... \n")
this_result = ai.generate(
n=1,
top_k=kparam,
batch_size=512,
max_length=128,
min_length=16,
prompt=this_prompt,
temperature=temp,
top_p=top_p,
do_sample=True,
return_as_list=True,
use_cache=True,
)
if verbose:
pp.pprint(this_result) # to see what is going on
try:
this_result = str(this_result[0]).split("\n")
res_out = [clean(ele) for ele in this_result]
p_out = [clean(ele) for ele in p_list]
if verbose:
pp.pprint(res_out) # to see what is going on
pp.pprint(p_out) # to see what is going on
diff_list = []
name_counter = 0
break_safe = False
for resline in res_out:
if (responder + ":") in resline:
name_counter += 1
break_safe = True # next line a response from bot
continue
if ":" in resline and name_counter > 0:
if break_safe:
diff_list.append(resline)
break_safe = False
else:
break
if resline in p_out:
break_safe = False
continue
else:
diff_list.append(resline)
break_safe = False
if verbose:
print("------------------------diff list: ")
pp.pprint(diff_list) # to see what is going on
print("---------------------------------")
output = ", ".join(diff_list)
except:
output = "oops, there was an error. try again"
p_list.append(output + "\n")
p_list.append("\n")
model_responses = {"out_text": output, "full_conv": p_list}
print("finished!\n")
return model_responses
# Set up the parsing of command-line arguments
def get_parser():
"""
get_parser [a helper function for the argparse module]
Returns:
[argparse.ArgumentParser]: [the argparser relevant for this script]
"""
parser = argparse.ArgumentParser(
description="submit a message and have a 774M parameter GPT model respond"
)
parser.add_argument(
"--prompt",
required=True, # MUST HAVE A PROMPT
type=str,
help="the message the bot is supposed to respond to. Prompt is said by speaker, answered by responder.",
)
parser.add_argument(
"--model",
required=False,
type=str,
# "gp2_DDandPeterTexts_774M_73Ksteps", - from GPT-Peter
default="GPT2_trivNatQAdailydia_774M_175Ksteps",
help="folder - with respect to git directory of your repo that has the model files in it (pytorch.bin + "
"config.json). No models? Run the script download_models.py",
)
parser.add_argument(
"--speaker",
required=False,
default=None,
help="Who the prompt is from (to the bot). Primarily relevant to bots trained on multi-individual chat data",
)
parser.add_argument(
"--responder",
required=False,
default="person beta",
help="who the responder is. Primarily relevant to bots trained on multi-individual chat data",
)
parser.add_argument(
"--topk",
required=False,
type=int,
default=150,
help="how many responses to sample (positive integer). lower = more random responses",
)
parser.add_argument(
"--temp",
required=False,
type=float,
default=0.75,
help="specify temperature hyperparam (0-1). roughly considered as 'model creativity'",
)
parser.add_argument(
"--topp",
required=False,
type=float,
default=0.65,
help="nucleus sampling frac (0-1). aka: what fraction of possible options are considered?",
)
parser.add_argument(
"--verbose",
default=False,
action="store_true",
help="pass this argument if you want all the printouts",
)
parser.add_argument(
"--time",
default=False,
action="store_true",
help="pass this argument if you want to know runtime",
)
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
query = args.prompt
model_dir = str(args.model)
model_loc = Path.cwd() / model_dir
spkr = args.speaker
rspndr = args.responder
k_results = args.topk
my_temp = args.temp
my_top_p = args.topp
want_verbose = args.verbose
want_rt = args.time
# force-update the speaker+responder params for the generic model case
if "dailydialogue" in model_dir.lower():
spkr = "john smith"
rspndr = "nancy sellers"
# ^ arbitrary people created when parsing Daily Dialogue dataset
# # force-update the speaker+responder params
# for the generic model case
if "natqa" in model_dir.lower():
spkr = "person alpha"
rspndr = "person beta"
# ^ arbitrary people created when parsing NatQA + TriviaQA + Daily Dialogue datasets
st = time.time()
resp = query_gpt_model(
folder_path=model_loc,
prompt_msg=query,
speaker=spkr,
responder=rspndr,
kparam=k_results,
temp=my_temp,
top_p=my_top_p,
verbose=want_verbose,
use_gpu=False,
)
output = resp["out_text"]
pp.pprint(output, indent=4)
# pp.pprint(this_result[3].strip(), indent=4)
rt = round(time.time() - st, 1)
if want_rt:
print("took {runtime} seconds to generate. \n".format(runtime=rt))
if want_verbose:
print("finished - ", datetime.now())
if want_verbose:
p_list = resp["full_conv"]
print("A transcript of your chat is as follows: \n")
p_list = [item.strip() for item in p_list]
pp.pprint(p_list)
|