eusholli's picture
initial push
8c3129f
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time
# Available model sizes
MODEL_CHOICES = ["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"]
current_choice = "tiny"
DEFAULT_MODEL_NAME = f"openai/whisper-{current_choice}"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
# Initialize the pipeline with the default model
pipe = pipeline(
task="automatic-speech-recognition",
model=DEFAULT_MODEL_NAME,
chunk_length_s=30,
device=device,
)
def transcribe(model_size, inputs, task):
if inputs is None:
raise gr.Error(
"No audio file submitted! Please upload or record an audio file before submitting your request."
)
global current_choice
global pipe
current_choice = model_size
MODEL_NAME = f"openai/whisper-{model_size}"
if (
pipe.model.name_or_path != MODEL_NAME
): # Reload the pipeline if model has changed
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
text = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps=True,
)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime(
"%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)
)
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(
f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video."
)
ydl_opts = {
"outtmpl": filename,
"format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best",
}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps=True,
)["text"]
return html_embed_str, text
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Dropdown(MODEL_CHOICES, label="Model Size", value=current_choice),
gr.Audio(sources=["microphone"], type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
theme="default",
title="Whisper: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo allows selection of any of the"
f" [OpenAI Whisper model sizes](https://huggingface.co/openai/whisper-large-v3) and Transformers to transcribe audio files"
" of arbitrary length. Large and above are multilingual."
" Based on https://huggingface.co/spaces/openai/whisper"
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Dropdown(MODEL_CHOICES, label="Model Size", value=current_choice),
gr.Audio(sources=["upload"], type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
theme="default",
title="Whisper: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
f" checkpoint [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Dropdown(MODEL_CHOICES, label="Model Size", value=current_choice),
gr.Textbox(
lines=1,
placeholder="Paste the URL to a YouTube video here",
label="YouTube URL",
),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs=["html", "text"],
theme="default",
title="Whisper: Transcribe Audio",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
f" [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface(
[mf_transcribe, file_transcribe, yt_transcribe],
["Microphone", "Audio file", "YouTube"],
)
demo.launch()