File size: 2,541 Bytes
0804d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f272313
 
 
0804d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f272313
0804d15
bc9d883
0804d15
f272313
0804d15
f5b1b3f
bc9d883
0804d15
 
 
f272313
0804d15
f272313
 
 
 
 
0804d15
 
f5b1b3f
0804d15
f5b1b3f
0804d15
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import datasets
from sklearn.feature_extraction.text import CountVectorizer

import evaluate


_DESCRIPTION = """
Returns the total number of words, and the number of unique words in the input data.
"""

_KWARGS_DESCRIPTION = """
Args:
    `data`: a list of `str` for which the words are counted.
    `max_vocab` (optional): the top number of words to consider (can be specified if dataset is too large)

Returns:
    `total_word_count` (`int`) : the total number of words in the input string(s)
    `unique_words` (`int`) : the number of unique words in the input list of strings.

Examples:
    >>> data = ["hello world and hello moon"]
    >>> wordcount= evaluate.load("word_count")
    >>> results = wordcount.compute(data=data)
    >>> print(results)
    {'total_word_count': 5, 'unique_words': 4}
"""
_CITATION = ""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class WordCount(evaluate.Measurement):
    """This measurement returns the total number of words and the number of unique words
    in the input string(s)."""

    def _info(self):
        return evaluate.MeasurementInfo(
            # This is the description that will appear on the modules page.
            module_type="measurement",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "data": datasets.Value("string"),
                }
            ),
        )

    def _compute(self, data, max_vocab=None):
        """Returns the number of unique words in the input data"""
        count_vectorizer = CountVectorizer(max_features=max_vocab)
        document_matrix = count_vectorizer.fit_transform(data)
        word_count = document_matrix.sum()
        unique_words = document_matrix.shape[1]
        return {"total_word_count": word_count, "unique_words": unique_words}