Spaces:
Running
Running
# Copyright 2020 The HuggingFace Evaluate Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" BLEURT metric. """ | |
import os | |
import datasets | |
from bleurt import score # From: git+https://github.com/google-research/bleurt.git | |
import evaluate | |
logger = evaluate.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{bleurt, | |
title={BLEURT: Learning Robust Metrics for Text Generation}, | |
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, | |
booktitle={ACL}, | |
year={2020}, | |
url={https://arxiv.org/abs/2004.04696} | |
} | |
""" | |
_DESCRIPTION = """\ | |
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) | |
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune | |
it for your specific application (the latter is expected to perform better). | |
See the project's README at https://github.com/google-research/bleurt#readme for more information. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
BLEURT score. | |
Args: | |
`predictions` (list of str): prediction/candidate sentences | |
`references` (list of str): reference sentences | |
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. | |
Returns: | |
'scores': List of scores. | |
Examples: | |
>>> predictions = ["hello there", "general kenobi"] | |
>>> references = ["hello there", "general kenobi"] | |
>>> bleurt = evaluate.load("bleurt") | |
>>> results = bleurt.compute(predictions=predictions, references=references) | |
>>> print([round(v, 2) for v in results["scores"]]) | |
[1.03, 1.04] | |
""" | |
CHECKPOINT_URLS = { | |
"bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", | |
"bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", | |
"bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", | |
"bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", | |
"bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", | |
"bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", | |
"BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", | |
"BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", | |
"BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", | |
"BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", | |
} | |
class BLEURT(evaluate.Metric): | |
def _info(self): | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
homepage="https://github.com/google-research/bleurt", | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Value("string", id="sequence"), | |
"references": datasets.Value("string", id="sequence"), | |
} | |
), | |
codebase_urls=["https://github.com/google-research/bleurt"], | |
reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"], | |
) | |
def _download_and_prepare(self, dl_manager): | |
# check that config name specifies a valid BLEURT model | |
if self.config_name == "default": | |
logger.warning( | |
"Using default BLEURT-Base checkpoint for sequence maximum length 128. " | |
"You can use a bigger model for better results with e.g.: evaluate.load('bleurt', 'bleurt-large-512')." | |
) | |
self.config_name = "bleurt-base-128" | |
if self.config_name.lower() in CHECKPOINT_URLS: | |
checkpoint_name = self.config_name.lower() | |
elif self.config_name.upper() in CHECKPOINT_URLS: | |
checkpoint_name = self.config_name.upper() | |
else: | |
raise KeyError( | |
f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" | |
) | |
# download the model checkpoint specified by self.config_name and set up the scorer | |
model_path = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) | |
self.scorer = score.BleurtScorer(os.path.join(model_path, checkpoint_name)) | |
def _compute(self, predictions, references): | |
scores = self.scorer.score(references=references, candidates=predictions) | |
return {"scores": scores} | |