File size: 6,102 Bytes
fa1e19e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This code is adapted from OpenAI's release
# https://github.com/openai/human-eval/blob/master/human_eval/execution.py

import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile


def check_correctness(check_program, timeout, task_id, completion_id):
    """
    Evaluates the functional correctness of a completion by running the test
    suite provided in the problem.

    :param completion_id: an optional completion ID so we can match
        the results later even if execution finishes asynchronously.
    """
    manager = multiprocessing.Manager()
    result = manager.list()

    p = multiprocessing.Process(target=unsafe_execute, args=(check_program, result, timeout))
    p.start()
    p.join(timeout=timeout + 1)
    if p.is_alive():
        p.kill()

    if not result:
        result.append("timed out")

    return dict(
        task_id=task_id,
        passed=result[0] == "passed",
        result=result[0],
        completion_id=completion_id,
    )


def unsafe_execute(check_program, result, timeout):

    with create_tempdir():

        # These system calls are needed when cleaning up tempdir.
        import os
        import shutil

        rmtree = shutil.rmtree
        rmdir = os.rmdir
        chdir = os.chdir

        # Disable functionalities that can make destructive changes to the test.
        reliability_guard()

        # Run program.
        try:
            exec_globals = {}
            with swallow_io():
                with time_limit(timeout):
                    exec(check_program, exec_globals)
            result.append("passed")
        except TimeoutException:
            result.append("timed out")
        except BaseException as e:
            result.append(f"failed: {e}")

        # Needed for cleaning up.
        shutil.rmtree = rmtree
        os.rmdir = rmdir
        os.chdir = chdir


@contextlib.contextmanager
def time_limit(seconds):
    def signal_handler(signum, frame):
        raise TimeoutException("Timed out!")

    signal.setitimer(signal.ITIMER_REAL, seconds)
    signal.signal(signal.SIGALRM, signal_handler)
    try:
        yield
    finally:
        signal.setitimer(signal.ITIMER_REAL, 0)


@contextlib.contextmanager
def swallow_io():
    stream = WriteOnlyStringIO()
    with contextlib.redirect_stdout(stream):
        with contextlib.redirect_stderr(stream):
            with redirect_stdin(stream):
                yield


@contextlib.contextmanager
def create_tempdir():
    with tempfile.TemporaryDirectory() as dirname:
        with chdir(dirname):
            yield dirname


class TimeoutException(Exception):
    pass


class WriteOnlyStringIO(io.StringIO):
    """StringIO that throws an exception when it's read from"""

    def read(self, *args, **kwargs):
        raise OSError

    def readline(self, *args, **kwargs):
        raise OSError

    def readlines(self, *args, **kwargs):
        raise OSError

    def readable(self, *args, **kwargs):
        """Returns True if the IO object can be read."""
        return False


class redirect_stdin(contextlib._RedirectStream):  # type: ignore
    _stream = "stdin"


@contextlib.contextmanager
def chdir(root):
    if root == ".":
        yield
        return
    cwd = os.getcwd()
    os.chdir(root)
    try:
        yield
    except BaseException as exc:
        raise exc
    finally:
        os.chdir(cwd)


def reliability_guard(maximum_memory_bytes=None):
    """
    This disables various destructive functions and prevents the generated code
    from interfering with the test (e.g. fork bomb, killing other processes,
    removing filesystem files, etc.)

    WARNING
    This function is NOT a security sandbox. Untrusted code, including, model-
    generated code, should not be blindly executed outside of one. See the
    Codex paper for more information about OpenAI's code sandbox, and proceed
    with caution.
    """

    if maximum_memory_bytes is not None:
        import resource

        resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes))
        resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes))
        if not platform.uname().system == "Darwin":
            resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes))

    faulthandler.disable()

    import builtins

    builtins.exit = None
    builtins.quit = None

    import os

    os.environ["OMP_NUM_THREADS"] = "1"

    os.kill = None
    os.system = None
    os.putenv = None
    os.remove = None
    os.removedirs = None
    os.rmdir = None
    os.fchdir = None
    os.setuid = None
    os.fork = None
    os.forkpty = None
    os.killpg = None
    os.rename = None
    os.renames = None
    os.truncate = None
    os.replace = None
    os.unlink = None
    os.fchmod = None
    os.fchown = None
    os.chmod = None
    os.chown = None
    os.chroot = None
    os.fchdir = None
    os.lchflags = None
    os.lchmod = None
    os.lchown = None
    os.getcwd = None
    os.chdir = None

    import shutil

    shutil.rmtree = None
    shutil.move = None
    shutil.chown = None

    import subprocess

    subprocess.Popen = None  # type: ignore

    __builtins__["help"] = None

    import sys

    sys.modules["ipdb"] = None
    sys.modules["joblib"] = None
    sys.modules["resource"] = None
    sys.modules["psutil"] = None
    sys.modules["tkinter"] = None