Spaces:
Sleeping
Sleeping
evegarcianz
commited on
Commit
•
7e8112b
1
Parent(s):
1c6c050
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install openai
|
2 |
+
!pip install transformers
|
3 |
+
!pip install -q gradio
|
4 |
+
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import re
|
8 |
+
import openai
|
9 |
+
from openai.api_resources import engine
|
10 |
+
import os
|
11 |
+
openai.api_key="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"
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
import openai
|
15 |
+
import numpy
|
16 |
+
import numpy as np
|
17 |
+
from transformers import GPT2TokenizerFast
|
18 |
+
from numpy.linalg import norm
|
19 |
+
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
#Meloni dataframe
|
25 |
+
df=pd.read_csv('roboGiorgia_3docsCleaner.csv')
|
26 |
+
df.rename(columns={'Unnamed: 0': 'number', 'prompt': 'prompt', 'completion':'content'}, inplace=True)
|
27 |
+
df.set_index(['number', 'prompt'], inplace=True)
|
28 |
+
df['tokens'] = df['content'].apply(lambda x: len(tokenizer.tokenize(x)))
|
29 |
+
|
30 |
+
#Calenda dataframe
|
31 |
+
df_calenda=pd.read_csv('roboCalenda_3docsCleaner_84prompting.csv')
|
32 |
+
df_calenda.rename(columns={'Unnamed: 0': 'number', 'prompt': 'prompt', 'completion':'content'}, inplace=True)
|
33 |
+
df_calenda.set_index(['number', 'prompt'], inplace=True)
|
34 |
+
df_calenda['tokens'] = df_calenda['content'].apply(lambda x: len(tokenizer.tokenize(x)))
|
35 |
+
|
36 |
+
#Letta dataframe
|
37 |
+
df_letta=pd.read_csv('roboLetta_3source_cleaner_84prompting.csv')
|
38 |
+
df_letta.rename(columns={'Unnamed: 0': 'number', 'prompt': 'prompt', 'completion':'content'}, inplace=True)
|
39 |
+
df_letta.set_index(['number', 'prompt'], inplace=True)
|
40 |
+
df_letta['tokens'] = df_letta['content'].apply(lambda x: len(tokenizer.tokenize(x)))
|
41 |
+
|
42 |
+
COMPLETIONS_MODEL = "text-davinci-003"
|
43 |
+
|
44 |
+
COMPLETIONS_API_PARAMS = {
|
45 |
+
"temperature": 1,
|
46 |
+
"max_tokens": 300,
|
47 |
+
"model": COMPLETIONS_MODEL,
|
48 |
+
}
|
49 |
+
|
50 |
+
def get_embedding(text: str, model: str):
|
51 |
+
"""
|
52 |
+
Create an embedding for any string passed using the OpenAI Embeddings API given a chosen GPT-3 model.
|
53 |
+
|
54 |
+
Return an embedding vector.
|
55 |
+
"""
|
56 |
+
result = openai.Embedding.create(
|
57 |
+
model=model,
|
58 |
+
input=text
|
59 |
+
)
|
60 |
+
return result["data"][0]["embedding"]
|
61 |
+
|
62 |
+
def get_doc_embedding(text):
|
63 |
+
"""
|
64 |
+
This function calls the previous function get_embedding, note that the model is hardcoded for simplicity when importing functions
|
65 |
+
from this file.
|
66 |
+
|
67 |
+
Return an embedding vector.
|
68 |
+
"""
|
69 |
+
return get_embedding(text, 'text-embedding-ada-002')
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def get_query_embedding(text):
|
74 |
+
"""
|
75 |
+
This function calls the previous function get_embedding, note that the model is hardcoded for simplicity when importing functions
|
76 |
+
from this file.
|
77 |
+
|
78 |
+
Return an embedding vector.
|
79 |
+
"""
|
80 |
+
return get_embedding(text, 'text-embedding-ada-002')
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
def compute_doc_embeddings(df: pd.DataFrame):
|
85 |
+
"""
|
86 |
+
Create an embedding for each row in the dataframe using the OpenAI Embeddings API.
|
87 |
+
|
88 |
+
Return a dictionary that maps between each embedding vector and the index of the row that it corresponds to.
|
89 |
+
"""
|
90 |
+
return {
|
91 |
+
idx: get_doc_embedding(r.content.replace("\n", " ")) for idx, r in df.iterrows()
|
92 |
+
}
|
93 |
+
|
94 |
+
def vector_similarity(x, y):
|
95 |
+
"""
|
96 |
+
Cosine similarity
|
97 |
+
|
98 |
+
"""
|
99 |
+
return np.dot(np.array(x), np.array(y))/ (norm(x)*norm(y))
|
100 |
+
|
101 |
+
def order_document_sections_by_query_similarity(query, contexts):
|
102 |
+
"""
|
103 |
+
Finds the query embedding and compares it against all of the pre-calculated document embeddings
|
104 |
+
to find the most relevant sections.
|
105 |
+
|
106 |
+
Return the list of document sections, sorted by relevance in descending order.
|
107 |
+
"""
|
108 |
+
query_embedding = get_query_embedding(query)
|
109 |
+
|
110 |
+
document_similarities = sorted([
|
111 |
+
(vector_similarity(query_embedding, doc_embedding), doc_index) for doc_index, doc_embedding in contexts.items()
|
112 |
+
], reverse=True)
|
113 |
+
|
114 |
+
return document_similarities
|
115 |
+
|
116 |
+
def construct_prompt(pre,question, context_embeddings, df):
|
117 |
+
"""
|
118 |
+
This function works based on the the function order_document_sections_by_query_similarity. It will construct a prompt using the
|
119 |
+
the most relevant sections of the document.
|
120 |
+
|
121 |
+
MAX_SECTION_LEN (in tokens) variable is key because it will control how many sections are concatenated in the prompt.
|
122 |
+
The function will stop joining sections once MAX_SECTION_LEN is reached.
|
123 |
+
|
124 |
+
header variable is also key because it will instruct clearly to answer only based on the context and how to answer if it does not know the answer.
|
125 |
+
This header is based on openai documentation.
|
126 |
+
https://beta.openai.com/docs/guides/fine-tuning/example-notebooks
|
127 |
+
|
128 |
+
Return the complete prompt and the long_context which is the union of the chosen most relevant sections.
|
129 |
+
|
130 |
+
"""
|
131 |
+
MAX_SECTION_LEN = 1650
|
132 |
+
SEPARATOR = "\n* "
|
133 |
+
|
134 |
+
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
135 |
+
separator_len = len(tokenizer.tokenize(SEPARATOR))
|
136 |
+
|
137 |
+
most_relevant_document_sections = order_document_sections_by_query_similarity(question, context_embeddings)
|
138 |
+
|
139 |
+
chosen_sections = []
|
140 |
+
chosen_sections_len = 0
|
141 |
+
chosen_sections_indexes = []
|
142 |
+
chosen_sections_links= []
|
143 |
+
|
144 |
+
for simi, section_index in most_relevant_document_sections:
|
145 |
+
#for _, section_index in most_relevant_document_sections:
|
146 |
+
# Add contexts until we run out of space.
|
147 |
+
document_section = df.loc[section_index]
|
148 |
+
|
149 |
+
chosen_sections_len += document_section.tokens + separator_len
|
150 |
+
if chosen_sections_len > MAX_SECTION_LEN:
|
151 |
+
break
|
152 |
+
|
153 |
+
chosen_sections.append(SEPARATOR + document_section.content.replace("\n", " "))
|
154 |
+
#chosen_sections_indexes.append(str(section_index))
|
155 |
+
chosen_sections_indexes.append(str(simi)+' '+str(section_index))
|
156 |
+
#chosen_sections_links.append( document_section.link)
|
157 |
+
|
158 |
+
|
159 |
+
# Useful diagnostic information
|
160 |
+
print(f"Selected {len(chosen_sections)} document sections:")
|
161 |
+
#print("\n".join(chosen_sections_indexes))
|
162 |
+
|
163 |
+
preprompt = """"\n\nContext:\n"""
|
164 |
+
preprompt= pre +preprompt
|
165 |
+
|
166 |
+
prompt=preprompt + "".join(chosen_sections) + "\n\n Q: " + question + "\n A:"
|
167 |
+
long_context= "".join(chosen_sections)
|
168 |
+
return prompt, long_context
|
169 |
+
|
170 |
+
def answer_query_with_context(pre,query,df,document_embeddings, show_prompt= False):
|
171 |
+
"""
|
172 |
+
Takes the prompt and calls the Openai API and returns an answer.
|
173 |
+
Note the parameters for the completion have been defined previously tempterature is set to 0 to avoid creative answers and
|
174 |
+
max_tokes to 300 gives a reasonable long answer.
|
175 |
+
"""
|
176 |
+
prompt, long_context = construct_prompt(
|
177 |
+
pre,
|
178 |
+
query,
|
179 |
+
document_embeddings,
|
180 |
+
df
|
181 |
+
)
|
182 |
+
|
183 |
+
if show_prompt:
|
184 |
+
print(prompt)
|
185 |
+
|
186 |
+
response = openai.Completion.create(
|
187 |
+
prompt=prompt,
|
188 |
+
stop=[".", " END"],
|
189 |
+
**COMPLETIONS_API_PARAMS
|
190 |
+
)
|
191 |
+
|
192 |
+
return long_context, response["choices"][0]["text"].strip(" \n")
|
193 |
+
|
194 |
+
def embedding_storage_to_dict(path):
|
195 |
+
df_prueba=pd.read_csv(path, engine="python")
|
196 |
+
df_prueba.drop('Unnamed: 0', inplace=True, axis=1)
|
197 |
+
df_prueba['section']=df_prueba['section'].apply(lambda x: eval(x))
|
198 |
+
df_prueba['vector']=df_prueba['vector'].apply(lambda x: eval(x))
|
199 |
+
sections_list=df_prueba.section
|
200 |
+
vectors_list=df_prueba.vector
|
201 |
+
|
202 |
+
embeddings_dictionary_from_storage={section:vector for section,vector in zip(sections_list,vectors_list)}
|
203 |
+
return embeddings_dictionary_from_storage
|
204 |
+
|
205 |
+
|
206 |
+
context_embeddings_calenda=embedding_storage_to_dict('Botlitica_Calenda_Vectors.csv')
|
207 |
+
context_embeddings_letta=embedding_storage_to_dict('Botlitica_Letta_Vectors.csv')
|
208 |
+
context_embeddings=embedding_storage_to_dict('Botlitica_Meloni_Vectors.csv')
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
def greet(question,candidate):
|
213 |
+
|
214 |
+
if candidate=='Meloni':
|
215 |
+
context_embeddings_selected= context_embeddings
|
216 |
+
df_selected= df
|
217 |
+
pre="Rispondi alla domanda come se fossi Giorgia Meloni."
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
if candidate=='Calenda':
|
224 |
+
context_embeddings_selected= context_embeddings_calenda
|
225 |
+
df_selected= df_calenda
|
226 |
+
pre="Rispondi alla domanda come se fossi Carlo Calenda."
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
if candidate=='Letta':
|
231 |
+
context_embeddings_selected= context_embeddings_letta
|
232 |
+
df_selected= df_letta
|
233 |
+
pre="Rispondi alla domanda come se fossi Enrico Letta."
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
#question=request.form['question']
|
238 |
+
contexto,respuesta=answer_query_with_context(pre,question,df_selected,context_embeddings_selected, show_prompt= True)
|
239 |
+
|
240 |
+
return contexto, respuesta
|
241 |
+
|
242 |
+
|
243 |
+
import gradio as gr
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
with gr.Blocks() as demo:
|
253 |
+
with gr.Row():
|
254 |
+
#gr.Markdown(value="![](https://upload.wikimedia.org/wikipedia/commons/9/94/AXA_Logo.svg)", elem_id='imagen')
|
255 |
+
gr.Markdown(
|
256 |
+
"""
|
257 |
+
# Botlitica!
|
258 |
+
Botlitica è una AI conversazionale addestrata per rispondere alle vostre domande rispecchiando la propaganda politica sui social media (Twitter e Facebook) pre-elezioni condotta dai premiers di tre partiti:
|
259 |
+
""")
|
260 |
+
|
261 |
+
|
262 |
+
question = gr.Textbox(label="Question")
|
263 |
+
|
264 |
+
with gr.Row():
|
265 |
+
candidate= gr.Dropdown(
|
266 |
+
["Meloni", "Calenda", "Letta"], label="Candidato")
|
267 |
+
# product= gr.Dropdown(
|
268 |
+
# ["Motor", "Home"], label="Product")
|
269 |
+
greet_btn = gr.Button("Chiedere")
|
270 |
+
|
271 |
+
output=[gr.Textbox(lines=3, label='Context used'), gr.Textbox(lines=3, label='Generative AI response') ]
|
272 |
+
#greet_btn = gr.Button("Submit")
|
273 |
+
greet_btn.click(fn=greet, inputs=[question,candidate,], outputs=output, api_name="greet")
|
274 |
+
gr.Markdown(
|
275 |
+
"""
|
276 |
+
# Was this answer useful?
|
277 |
+
""")
|
278 |
+
with gr.Row():
|
279 |
+
feed_btn = gr.Button("Yes :)")
|
280 |
+
feed_btn_neg = gr.Button("No :(")
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
|
286 |
+
demo.launch()
|