import pandas as pd import topicwizard from sklearn.decomposition import NMF from topicwizard.pipeline import make_topic_pipeline from sklearn.feature_extraction.text import CountVectorizer df = pd.read_csv('df_merged.csv') abstracts=df['description'].tolist() vectorizer = CountVectorizer(min_df=5, max_df=0.8, stop_words="english") model = NMF(n_components=10) topic_pipeline = make_topic_pipeline(vectorizer, model) topic_pipeline.fit(abstracts) topicwizard.visualize(abstracts, pipeline=topic_pipeline) app = topicwizard.get_dash_app(vectorizer, model, corpus=abstracts) # main.py if __name__ == "__main__": app.run_server(debug=False, port=7860)