import gradio as gr import spaces import torch from torchvision import transforms from SDXL.diff_pipe import StableDiffusionXLDiffImg2ImgPipeline from diffusers import DPMSolverMultistepScheduler NUM_INFERENCE_STEPS = 50 device = "cuda" base = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ).to(device) refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=base.text_encoder_2, vae=base.vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(device) base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config) refiner.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config) def preprocess_image(image): image = image.convert("RGB") image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image) image = transforms.ToTensor()(image) image = image * 2 - 1 image = image.unsqueeze(0).to(device) return image def preprocess_map(map): map = map.convert("L") map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map) # convert to tensor map = transforms.ToTensor()(map) map = map.to(device) return map @spaces.GPU def inference(image, map, gs, prompt, negative_prompt): validate_inputs(image, map) image = preprocess_image(image) map = preprocess_map(map) edited_images = base(prompt=prompt, original_image=image, image=image, strength=1, guidance_scale=gs, num_images_per_prompt=1, negative_prompt=negative_prompt, map=map, num_inference_steps=NUM_INFERENCE_STEPS, denoising_end=0.8, output_type="latent").images edited_images = refiner(prompt=prompt, original_image=image, image=edited_images, strength=1, guidance_scale=7.5, num_images_per_prompt=1, negative_prompt=negative_prompt, map=map, num_inference_steps=NUM_INFERENCE_STEPS, denoising_start=0.8).images[0] return edited_images def validate_inputs(image, map): if image is None: raise gr.Error("Missing image") if map is None: raise gr.Error("Missing map") example1 = ["assets/input2.jpg", "assets/map2.jpg", 17.5, "Tree of life under the sea, ethereal, glittering, lens flares, cinematic lighting, artwork by Anna Dittmann & Carne Griffiths, 8k, unreal engine 5, hightly detailed, intricate detailed", "bad anatomy, poorly drawn face, out of frame, gibberish, lowres, duplicate, morbid, darkness, maniacal, creepy, fused, blurry background, crosseyed, extra limbs, mutilated, dehydrated, surprised, poor quality, uneven, off-centered, bird illustration, painting, cartoons"] example2 = ["assets/input3.jpg", "assets/map4.png", 21, "overgrown atrium, nature, ancient black marble columns and terracotta tile floors, waterfall, ultra-high quality, octane render, corona render, UHD, 64k", "Two bodies, Two heads, doll, extra nipples, bad anatomy, blurry, fuzzy, extra arms, extra fingers, poorly drawn hands, disfigured, tiling, deformed, mutated, out of frame, cloned face, watermark, text, lowres, disfigured, ostentatious, ugly, oversaturated, grain, low resolution, blurry, bad anatomy, poorly drawn face, mutant, mutated, blurred, out of focus, long neck, long body, ugly, disgusting, bad drawing, childish"] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label="Input Image", type="pil") change_map = gr.Image(label="Change Map", type="pil") gs = gr.Slider(0, 28, value=7.5, label="Guidance Scale") prompt = gr.Textbox(label="Prompt") neg_prompt = gr.Textbox(label="Negative Prompt") with gr.Row(): clr_btn=gr.ClearButton(components=[input_image, change_map, gs, prompt, neg_prompt]) run_btn = gr.Button("Run",variant="primary") output = gr.Image(label="Output Image") gr.Examples(examples=[example1, example2],inputs=[input_image, change_map, gs, prompt, neg_prompt]) gr.Markdown("Differential Diffusion with SDXL; Thanks to the community for the prompts in the examples.") run_btn.click(inference, inputs=[input_image, change_map, gs, prompt, neg_prompt], outputs=output) clr_btn.add(output) if __name__ == "__main__": demo.launch()