Spaces:
Runtime error
Runtime error
File size: 11,736 Bytes
e276be2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import argparse
import os
import torch
import json
import warnings
import omegaconf
from omegaconf import OmegaConf
from sat.helpers import print_rank0
from sat import mpu
from sat.arguments import set_random_seed
from sat.arguments import add_training_args, add_evaluation_args, add_data_args
import torch.distributed
def add_model_config_args(parser):
"""Model arguments"""
group = parser.add_argument_group("model", "model configuration")
group.add_argument("--base", type=str, nargs="*", help="config for input and saving")
group.add_argument(
"--model-parallel-size", type=int, default=1, help="size of the model parallel. only use if you are an expert."
)
group.add_argument("--force-pretrain", action="store_true")
group.add_argument("--device", type=int, default=-1)
group.add_argument("--debug", action="store_true")
group.add_argument("--log-image", type=bool, default=True)
return parser
def add_sampling_config_args(parser):
"""Sampling configurations"""
group = parser.add_argument_group("sampling", "Sampling Configurations")
group.add_argument("--output-dir", type=str, default="samples")
group.add_argument("--input-dir", type=str, default=None)
group.add_argument("--input-type", type=str, default="cli")
group.add_argument("--input-file", type=str, default="input.txt")
group.add_argument("--final-size", type=int, default=2048)
group.add_argument("--sdedit", action="store_true")
group.add_argument("--grid-num-rows", type=int, default=1)
group.add_argument("--force-inference", action="store_true")
group.add_argument("--lcm_steps", type=int, default=None)
group.add_argument("--sampling-num-frames", type=int, default=32)
group.add_argument("--sampling-fps", type=int, default=8)
group.add_argument("--only-save-latents", type=bool, default=False)
group.add_argument("--only-log-video-latents", type=bool, default=False)
group.add_argument("--latent-channels", type=int, default=32)
group.add_argument("--image2video", action="store_true")
return parser
def get_args(args_list=None, parser=None):
"""Parse all the args."""
if parser is None:
parser = argparse.ArgumentParser(description="sat")
else:
assert isinstance(parser, argparse.ArgumentParser)
parser = add_model_config_args(parser)
parser = add_sampling_config_args(parser)
parser = add_training_args(parser)
parser = add_evaluation_args(parser)
parser = add_data_args(parser)
import deepspeed
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args(args_list)
args = process_config_to_args(args)
if not args.train_data:
print_rank0("No training data specified", level="WARNING")
assert (args.train_iters is None) or (args.epochs is None), "only one of train_iters and epochs should be set."
if args.train_iters is None and args.epochs is None:
args.train_iters = 10000 # default 10k iters
print_rank0("No train_iters (recommended) or epochs specified, use default 10k iters.", level="WARNING")
args.cuda = torch.cuda.is_available()
args.rank = int(os.getenv("RANK", "0"))
args.world_size = int(os.getenv("WORLD_SIZE", "1"))
if args.local_rank is None:
args.local_rank = int(os.getenv("LOCAL_RANK", "0")) # torchrun
if args.device == -1:
if torch.cuda.device_count() == 0:
args.device = "cpu"
elif args.local_rank is not None:
args.device = args.local_rank
else:
args.device = args.rank % torch.cuda.device_count()
if args.local_rank != args.device and args.mode != "inference":
raise ValueError(
"LOCAL_RANK (default 0) and args.device inconsistent. "
"This can only happens in inference mode. "
"Please use CUDA_VISIBLE_DEVICES=x for single-GPU training. "
)
if args.rank == 0:
print_rank0("using world size: {}".format(args.world_size))
if args.train_data_weights is not None:
assert len(args.train_data_weights) == len(args.train_data)
if args.mode != "inference": # training with deepspeed
args.deepspeed = True
if args.deepspeed_config is None: # not specified
deepspeed_config_path = os.path.join(
os.path.dirname(__file__), "training", f"deepspeed_zero{args.zero_stage}.json"
)
with open(deepspeed_config_path) as file:
args.deepspeed_config = json.load(file)
override_deepspeed_config = True
else:
override_deepspeed_config = False
assert not (args.fp16 and args.bf16), "cannot specify both fp16 and bf16."
if args.zero_stage > 0 and not args.fp16 and not args.bf16:
print_rank0("Automatically set fp16=True to use ZeRO.")
args.fp16 = True
args.bf16 = False
if args.deepspeed:
if args.checkpoint_activations:
args.deepspeed_activation_checkpointing = True
else:
args.deepspeed_activation_checkpointing = False
if args.deepspeed_config is not None:
deepspeed_config = args.deepspeed_config
if override_deepspeed_config: # not specify deepspeed_config, use args
if args.fp16:
deepspeed_config["fp16"]["enabled"] = True
elif args.bf16:
deepspeed_config["bf16"]["enabled"] = True
deepspeed_config["fp16"]["enabled"] = False
else:
deepspeed_config["fp16"]["enabled"] = False
deepspeed_config["train_micro_batch_size_per_gpu"] = args.batch_size
deepspeed_config["gradient_accumulation_steps"] = args.gradient_accumulation_steps
optimizer_params_config = deepspeed_config["optimizer"]["params"]
optimizer_params_config["lr"] = args.lr
optimizer_params_config["weight_decay"] = args.weight_decay
else: # override args with values in deepspeed_config
if args.rank == 0:
print_rank0("Will override arguments with manually specified deepspeed_config!")
if "fp16" in deepspeed_config and deepspeed_config["fp16"]["enabled"]:
args.fp16 = True
else:
args.fp16 = False
if "bf16" in deepspeed_config and deepspeed_config["bf16"]["enabled"]:
args.bf16 = True
else:
args.bf16 = False
if "train_micro_batch_size_per_gpu" in deepspeed_config:
args.batch_size = deepspeed_config["train_micro_batch_size_per_gpu"]
if "gradient_accumulation_steps" in deepspeed_config:
args.gradient_accumulation_steps = deepspeed_config["gradient_accumulation_steps"]
else:
args.gradient_accumulation_steps = None
if "optimizer" in deepspeed_config:
optimizer_params_config = deepspeed_config["optimizer"].get("params", {})
args.lr = optimizer_params_config.get("lr", args.lr)
args.weight_decay = optimizer_params_config.get("weight_decay", args.weight_decay)
args.deepspeed_config = deepspeed_config
# initialize distributed and random seed because it always seems to be necessary.
initialize_distributed(args)
args.seed = args.seed + mpu.get_data_parallel_rank()
set_random_seed(args.seed)
return args
def initialize_distributed(args):
"""Initialize torch.distributed."""
if torch.distributed.is_initialized():
if mpu.model_parallel_is_initialized():
if args.model_parallel_size != mpu.get_model_parallel_world_size():
raise ValueError(
"model_parallel_size is inconsistent with prior configuration."
"We currently do not support changing model_parallel_size."
)
return False
else:
if args.model_parallel_size > 1:
warnings.warn(
"model_parallel_size > 1 but torch.distributed is not initialized via SAT."
"Please carefully make sure the correctness on your own."
)
mpu.initialize_model_parallel(args.model_parallel_size)
return True
# the automatic assignment of devices has been moved to arguments.py
if args.device == "cpu":
pass
else:
torch.cuda.set_device(args.device)
# Call the init process
init_method = "tcp://"
args.master_ip = os.getenv("MASTER_ADDR", "localhost")
if args.world_size == 1:
from sat.helpers import get_free_port
default_master_port = str(get_free_port())
else:
default_master_port = "6000"
args.master_port = os.getenv("MASTER_PORT", default_master_port)
init_method += args.master_ip + ":" + args.master_port
torch.distributed.init_process_group(
backend=args.distributed_backend, world_size=args.world_size, rank=args.rank, init_method=init_method
)
# Set the model-parallel / data-parallel communicators.
mpu.initialize_model_parallel(args.model_parallel_size)
# Set vae context parallel group equal to model parallel group
from sgm.util import set_context_parallel_group, initialize_context_parallel
if args.model_parallel_size <= 2:
set_context_parallel_group(args.model_parallel_size, mpu.get_model_parallel_group())
else:
initialize_context_parallel(2)
# mpu.initialize_model_parallel(1)
# Optional DeepSpeed Activation Checkpointing Features
if args.deepspeed:
import deepspeed
deepspeed.init_distributed(
dist_backend=args.distributed_backend, world_size=args.world_size, rank=args.rank, init_method=init_method
)
# # It seems that it has no negative influence to configure it even without using checkpointing.
# deepspeed.checkpointing.configure(mpu, deepspeed_config=args.deepspeed_config, num_checkpoints=args.num_layers)
else:
# in model-only mode, we don't want to init deepspeed, but we still need to init the rng tracker for model_parallel, just because we save the seed by default when dropout.
try:
import deepspeed
from deepspeed.runtime.activation_checkpointing.checkpointing import (
_CUDA_RNG_STATE_TRACKER,
_MODEL_PARALLEL_RNG_TRACKER_NAME,
)
_CUDA_RNG_STATE_TRACKER.add(_MODEL_PARALLEL_RNG_TRACKER_NAME, 1) # default seed 1
except Exception as e:
from sat.helpers import print_rank0
print_rank0(str(e), level="DEBUG")
return True
def process_config_to_args(args):
"""Fetch args from only --base"""
configs = [OmegaConf.load(cfg) for cfg in args.base]
config = OmegaConf.merge(*configs)
args_config = config.pop("args", OmegaConf.create())
for key in args_config:
if isinstance(args_config[key], omegaconf.DictConfig) or isinstance(args_config[key], omegaconf.ListConfig):
arg = OmegaConf.to_object(args_config[key])
else:
arg = args_config[key]
if hasattr(args, key):
setattr(args, key, arg)
if "model" in config:
model_config = config.pop("model", OmegaConf.create())
args.model_config = model_config
if "deepspeed" in config:
deepspeed_config = config.pop("deepspeed", OmegaConf.create())
args.deepspeed_config = OmegaConf.to_object(deepspeed_config)
if "data" in config:
data_config = config.pop("data", OmegaConf.create())
args.data_config = data_config
return args
|