CogVideo / sat /data_video.py
eysho's picture
Upload folder using huggingface_hub
e276be2 verified
import io
import os
import sys
from functools import partial
import math
import torchvision.transforms as TT
from sgm.webds import MetaDistributedWebDataset
import random
from fractions import Fraction
from typing import Union, Optional, Dict, Any, Tuple
from torchvision.io.video import av
import numpy as np
import torch
from torchvision.io import _video_opt
from torchvision.io.video import _check_av_available, _read_from_stream, _align_audio_frames
from torchvision.transforms.functional import center_crop, resize
from torchvision.transforms import InterpolationMode
import decord
from decord import VideoReader
from torch.utils.data import Dataset
def read_video(
filename: str,
start_pts: Union[float, Fraction] = 0,
end_pts: Optional[Union[float, Fraction]] = None,
pts_unit: str = "pts",
output_format: str = "THWC",
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
"""
Reads a video from a file, returning both the video frames and the audio frames
Args:
filename (str): path to the video file
start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
The start presentation time of the video
end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
The end presentation time
pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted,
either 'pts' or 'sec'. Defaults to 'pts'.
output_format (str, optional): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".
Returns:
vframes (Tensor[T, H, W, C] or Tensor[T, C, H, W]): the `T` video frames
aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points
info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int)
"""
output_format = output_format.upper()
if output_format not in ("THWC", "TCHW"):
raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")
_check_av_available()
if end_pts is None:
end_pts = float("inf")
if end_pts < start_pts:
raise ValueError(f"end_pts should be larger than start_pts, got start_pts={start_pts} and end_pts={end_pts}")
info = {}
audio_frames = []
audio_timebase = _video_opt.default_timebase
with av.open(filename, metadata_errors="ignore") as container:
if container.streams.audio:
audio_timebase = container.streams.audio[0].time_base
if container.streams.video:
video_frames = _read_from_stream(
container,
start_pts,
end_pts,
pts_unit,
container.streams.video[0],
{"video": 0},
)
video_fps = container.streams.video[0].average_rate
# guard against potentially corrupted files
if video_fps is not None:
info["video_fps"] = float(video_fps)
if container.streams.audio:
audio_frames = _read_from_stream(
container,
start_pts,
end_pts,
pts_unit,
container.streams.audio[0],
{"audio": 0},
)
info["audio_fps"] = container.streams.audio[0].rate
aframes_list = [frame.to_ndarray() for frame in audio_frames]
vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8)
if aframes_list:
aframes = np.concatenate(aframes_list, 1)
aframes = torch.as_tensor(aframes)
if pts_unit == "sec":
start_pts = int(math.floor(start_pts * (1 / audio_timebase)))
if end_pts != float("inf"):
end_pts = int(math.ceil(end_pts * (1 / audio_timebase)))
aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts)
else:
aframes = torch.empty((1, 0), dtype=torch.float32)
if output_format == "TCHW":
# [T,H,W,C] --> [T,C,H,W]
vframes = vframes.permute(0, 3, 1, 2)
return vframes, aframes, info
def resize_for_rectangle_crop(arr, image_size, reshape_mode="random"):
if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
arr = resize(
arr,
size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
interpolation=InterpolationMode.BICUBIC,
)
else:
arr = resize(
arr,
size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
interpolation=InterpolationMode.BICUBIC,
)
h, w = arr.shape[2], arr.shape[3]
arr = arr.squeeze(0)
delta_h = h - image_size[0]
delta_w = w - image_size[1]
if reshape_mode == "random" or reshape_mode == "none":
top = np.random.randint(0, delta_h + 1)
left = np.random.randint(0, delta_w + 1)
elif reshape_mode == "center":
top, left = delta_h // 2, delta_w // 2
else:
raise NotImplementedError
arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
return arr
def pad_last_frame(tensor, num_frames):
# T, H, W, C
if tensor.shape[0] < num_frames:
last_frame = tensor[-int(num_frames - tensor.shape[1]) :]
padded_tensor = torch.cat([tensor, last_frame], dim=0)
return padded_tensor
else:
return tensor[:num_frames]
def load_video(
video_data,
sampling="uniform",
duration=None,
num_frames=4,
wanted_fps=None,
actual_fps=None,
skip_frms_num=0.0,
nb_read_frames=None,
):
decord.bridge.set_bridge("torch")
vr = VideoReader(uri=video_data, height=-1, width=-1)
if nb_read_frames is not None:
ori_vlen = nb_read_frames
else:
ori_vlen = min(int(duration * actual_fps) - 1, len(vr))
max_seek = int(ori_vlen - skip_frms_num - num_frames / wanted_fps * actual_fps)
start = random.randint(skip_frms_num, max_seek + 1)
end = int(start + num_frames / wanted_fps * actual_fps)
n_frms = num_frames
if sampling == "uniform":
indices = np.arange(start, end, (end - start) / n_frms).astype(int)
else:
raise NotImplementedError
# get_batch -> T, H, W, C
temp_frms = vr.get_batch(np.arange(start, end))
assert temp_frms is not None
tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
return pad_last_frame(tensor_frms, num_frames)
import threading
def load_video_with_timeout(*args, **kwargs):
video_container = {}
def target_function():
video = load_video(*args, **kwargs)
video_container["video"] = video
thread = threading.Thread(target=target_function)
thread.start()
timeout = 20
thread.join(timeout)
if thread.is_alive():
print("Loading video timed out")
raise TimeoutError
return video_container.get("video", None).contiguous()
def process_video(
video_path,
image_size=None,
duration=None,
num_frames=4,
wanted_fps=None,
actual_fps=None,
skip_frms_num=0.0,
nb_read_frames=None,
):
"""
video_path: str or io.BytesIO
image_size: .
duration: preknow the duration to speed up by seeking to sampled start. TODO by_pass if unknown.
num_frames: wanted num_frames.
wanted_fps: .
skip_frms_num: ignore the first and the last xx frames, avoiding transitions.
"""
video = load_video_with_timeout(
video_path,
duration=duration,
num_frames=num_frames,
wanted_fps=wanted_fps,
actual_fps=actual_fps,
skip_frms_num=skip_frms_num,
nb_read_frames=nb_read_frames,
)
# --- copy and modify the image process ---
video = video.permute(0, 3, 1, 2) # [T, C, H, W]
# resize
if image_size is not None:
video = resize_for_rectangle_crop(video, image_size, reshape_mode="center")
return video
def process_fn_video(src, image_size, fps, num_frames, skip_frms_num=0.0, txt_key="caption"):
while True:
r = next(src)
if "mp4" in r:
video_data = r["mp4"]
elif "avi" in r:
video_data = r["avi"]
else:
print("No video data found")
continue
if txt_key not in r:
txt = ""
else:
txt = r[txt_key]
if isinstance(txt, bytes):
txt = txt.decode("utf-8")
else:
txt = str(txt)
duration = r.get("duration", None)
if duration is not None:
duration = float(duration)
else:
continue
actual_fps = r.get("fps", None)
if actual_fps is not None:
actual_fps = float(actual_fps)
else:
continue
required_frames = num_frames / fps * actual_fps + 2 * skip_frms_num
required_duration = num_frames / fps + 2 * skip_frms_num / actual_fps
if duration is not None and duration < required_duration:
continue
try:
frames = process_video(
io.BytesIO(video_data),
num_frames=num_frames,
wanted_fps=fps,
image_size=image_size,
duration=duration,
actual_fps=actual_fps,
skip_frms_num=skip_frms_num,
)
frames = (frames - 127.5) / 127.5
except Exception as e:
print(e)
continue
item = {
"mp4": frames,
"txt": txt,
"num_frames": num_frames,
"fps": fps,
}
yield item
class VideoDataset(MetaDistributedWebDataset):
def __init__(
self,
path,
image_size,
num_frames,
fps,
skip_frms_num=0.0,
nshards=sys.maxsize,
seed=1,
meta_names=None,
shuffle_buffer=1000,
include_dirs=None,
txt_key="caption",
**kwargs,
):
if seed == -1:
seed = random.randint(0, 1000000)
if meta_names is None:
meta_names = []
if path.startswith(";"):
path, include_dirs = path.split(";", 1)
super().__init__(
path,
partial(
process_fn_video, num_frames=num_frames, image_size=image_size, fps=fps, skip_frms_num=skip_frms_num
),
seed,
meta_names=meta_names,
shuffle_buffer=shuffle_buffer,
nshards=nshards,
include_dirs=include_dirs,
)
@classmethod
def create_dataset_function(cls, path, args, **kwargs):
return cls(path, **kwargs)
class SFTDataset(Dataset):
def __init__(self, data_dir, video_size, fps, max_num_frames, skip_frms_num=3):
"""
skip_frms_num: ignore the first and the last xx frames, avoiding transitions.
"""
super(SFTDataset, self).__init__()
self.videos_list = []
self.captions_list = []
self.num_frames_list = []
self.fps_list = []
decord.bridge.set_bridge("torch")
for root, dirnames, filenames in os.walk(data_dir):
for filename in filenames:
if filename.endswith(".mp4"):
video_path = os.path.join(root, filename)
vr = VideoReader(uri=video_path, height=-1, width=-1)
actual_fps = vr.get_avg_fps()
ori_vlen = len(vr)
if ori_vlen / actual_fps * fps > max_num_frames:
num_frames = max_num_frames
start = int(skip_frms_num)
end = int(start + num_frames / fps * actual_fps)
indices = np.arange(start, end, (end - start) / num_frames).astype(int)
temp_frms = vr.get_batch(np.arange(start, end))
assert temp_frms is not None
tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
else:
if ori_vlen > max_num_frames:
num_frames = max_num_frames
start = int(skip_frms_num)
end = int(ori_vlen - skip_frms_num)
indices = np.arange(start, end, (end - start) / num_frames).astype(int)
temp_frms = vr.get_batch(np.arange(start, end))
assert temp_frms is not None
tensor_frms = (
torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
)
tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
else:
def nearest_smaller_4k_plus_1(n):
remainder = n % 4
if remainder == 0:
return n - 3
else:
return n - remainder + 1
start = int(skip_frms_num)
end = int(ori_vlen - skip_frms_num)
num_frames = nearest_smaller_4k_plus_1(
end - start
) # 3D VAE requires the number of frames to be 4k+1
end = int(start + num_frames)
temp_frms = vr.get_batch(np.arange(start, end))
assert temp_frms is not None
tensor_frms = (
torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
)
tensor_frms = pad_last_frame(
tensor_frms, num_frames
) # the len of indices may be less than num_frames, due to round error
tensor_frms = tensor_frms.permute(0, 3, 1, 2) # [T, H, W, C] -> [T, C, H, W]
tensor_frms = resize_for_rectangle_crop(tensor_frms, video_size, reshape_mode="center")
tensor_frms = (tensor_frms - 127.5) / 127.5
self.videos_list.append(tensor_frms)
# caption
caption_path = os.path.join(root, filename.replace("videos", "labels").replace(".mp4", ".txt"))
if os.path.exists(caption_path):
caption = open(caption_path, "r").read().splitlines()[0]
else:
caption = ""
self.captions_list.append(caption)
self.num_frames_list.append(num_frames)
self.fps_list.append(fps)
def __getitem__(self, index):
item = {
"mp4": self.videos_list[index],
"txt": self.captions_list[index],
"num_frames": self.num_frames_list[index],
"fps": self.fps_list[index],
}
return item
def __len__(self):
return len(self.fps_list)
@classmethod
def create_dataset_function(cls, path, args, **kwargs):
return cls(data_dir=path, **kwargs)