import math from contextlib import contextmanager from typing import Any, Dict, List, Tuple, Union, Optional from omegaconf import ListConfig, OmegaConf from copy import deepcopy import torch.nn.functional as F from sat.helpers import print_rank0 import torch from torch import nn from sgm.modules import UNCONDITIONAL_CONFIG from sgm.modules.autoencoding.temporal_ae import VideoDecoder from sgm.modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER from sgm.util import ( default, disabled_train, get_obj_from_str, instantiate_from_config, log_txt_as_img, ) import gc from sat import mpu import random class SATVideoDiffusionEngine(nn.Module): def __init__(self, args, **kwargs): super().__init__() model_config = args.model_config # model args preprocess log_keys = model_config.get("log_keys", None) input_key = model_config.get("input_key", "mp4") network_config = model_config.get("network_config", None) network_wrapper = model_config.get("network_wrapper", None) denoiser_config = model_config.get("denoiser_config", None) sampler_config = model_config.get("sampler_config", None) conditioner_config = model_config.get("conditioner_config", None) first_stage_config = model_config.get("first_stage_config", None) loss_fn_config = model_config.get("loss_fn_config", None) scale_factor = model_config.get("scale_factor", 1.0) latent_input = model_config.get("latent_input", False) disable_first_stage_autocast = model_config.get("disable_first_stage_autocast", False) no_cond_log = model_config.get("disable_first_stage_autocast", False) not_trainable_prefixes = model_config.get("not_trainable_prefixes", ["first_stage_model", "conditioner"]) compile_model = model_config.get("compile_model", False) en_and_decode_n_samples_a_time = model_config.get("en_and_decode_n_samples_a_time", None) lr_scale = model_config.get("lr_scale", None) lora_train = model_config.get("lora_train", False) self.use_pd = model_config.get("use_pd", False) # progressive distillation self.log_keys = log_keys self.input_key = input_key self.not_trainable_prefixes = not_trainable_prefixes self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time self.lr_scale = lr_scale self.lora_train = lora_train self.noised_image_input = model_config.get("noised_image_input", False) self.noised_image_all_concat = model_config.get("noised_image_all_concat", False) self.noised_image_dropout = model_config.get("noised_image_dropout", 0.0) if args.fp16: dtype = torch.float16 dtype_str = "fp16" elif args.bf16: dtype = torch.bfloat16 dtype_str = "bf16" else: dtype = torch.float32 dtype_str = "fp32" self.dtype = dtype self.dtype_str = dtype_str network_config["params"]["dtype"] = dtype_str model = instantiate_from_config(network_config) self.model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))( model, compile_model=compile_model, dtype=dtype ) self.denoiser = instantiate_from_config(denoiser_config) self.sampler = instantiate_from_config(sampler_config) if sampler_config is not None else None self.conditioner = instantiate_from_config(default(conditioner_config, UNCONDITIONAL_CONFIG)) self._init_first_stage(first_stage_config) self.loss_fn = instantiate_from_config(loss_fn_config) if loss_fn_config is not None else None self.latent_input = latent_input self.scale_factor = scale_factor self.disable_first_stage_autocast = disable_first_stage_autocast self.no_cond_log = no_cond_log self.device = args.device def disable_untrainable_params(self): total_trainable = 0 for n, p in self.named_parameters(): if p.requires_grad == False: continue flag = False for prefix in self.not_trainable_prefixes: if n.startswith(prefix) or prefix == "all": flag = True break lora_prefix = ["matrix_A", "matrix_B"] for prefix in lora_prefix: if prefix in n: flag = False break if flag: p.requires_grad_(False) else: total_trainable += p.numel() print_rank0("***** Total trainable parameters: " + str(total_trainable) + " *****") def reinit(self, parent_model=None): # reload the initial params from previous trained modules # you can also get access to other mixins through parent_model.get_mixin(). pass def _init_first_stage(self, config): model = instantiate_from_config(config).eval() model.train = disabled_train for param in model.parameters(): param.requires_grad = False self.first_stage_model = model def forward(self, x, batch): loss = self.loss_fn(self.model, self.denoiser, self.conditioner, x, batch) loss_mean = loss.mean() loss_dict = {"loss": loss_mean} return loss_mean, loss_dict def shared_step(self, batch: Dict) -> Any: x = self.get_input(batch) if self.lr_scale is not None: lr_x = F.interpolate(x, scale_factor=1 / self.lr_scale, mode="bilinear", align_corners=False) lr_x = F.interpolate(lr_x, scale_factor=self.lr_scale, mode="bilinear", align_corners=False) lr_z = self.encode_first_stage(lr_x, batch) batch["lr_input"] = lr_z x = x.permute(0, 2, 1, 3, 4).contiguous() x = self.encode_first_stage(x, batch) x = x.permute(0, 2, 1, 3, 4).contiguous() gc.collect() torch.cuda.empty_cache() loss, loss_dict = self(x, batch) return loss, loss_dict def get_input(self, batch): return batch[self.input_key].to(self.dtype) @torch.no_grad() def decode_first_stage(self, z): z = 1.0 / self.scale_factor * z n_samples = default(self.en_and_decode_n_samples_a_time, z.shape[0]) n_rounds = math.ceil(z.shape[0] / n_samples) all_out = [] with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast): for n in range(n_rounds): if isinstance(self.first_stage_model.decoder, VideoDecoder): kwargs = {"timesteps": len(z[n * n_samples : (n + 1) * n_samples])} else: kwargs = {} use_cp = False out = self.first_stage_model.decode(z[n * n_samples : (n + 1) * n_samples], **kwargs) all_out.append(out) out = torch.cat(all_out, dim=0) return out @torch.no_grad() def encode_first_stage(self, x, batch): frame = x.shape[2] if frame > 1 and self.latent_input: x = x.permute(0, 2, 1, 3, 4).contiguous() return x * self.scale_factor # already encoded use_cp = False n_samples = default(self.en_and_decode_n_samples_a_time, x.shape[0]) n_rounds = math.ceil(x.shape[0] / n_samples) all_out = [] with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast): for n in range(n_rounds): out = self.first_stage_model.encode(x[n * n_samples : (n + 1) * n_samples]) all_out.append(out) z = torch.cat(all_out, dim=0) z = self.scale_factor * z return z @torch.no_grad() def sample( self, cond: Dict, uc: Union[Dict, None] = None, batch_size: int = 16, shape: Union[None, Tuple, List] = None, prefix=None, concat_images=None, **kwargs, ): randn = torch.randn(batch_size, *shape).to(torch.float32).to(self.device) if hasattr(self, "seeded_noise"): randn = self.seeded_noise(randn) if prefix is not None: randn = torch.cat([prefix, randn[:, prefix.shape[1] :]], dim=1) # broadcast noise mp_size = mpu.get_model_parallel_world_size() if mp_size > 1: global_rank = torch.distributed.get_rank() // mp_size src = global_rank * mp_size torch.distributed.broadcast(randn, src=src, group=mpu.get_model_parallel_group()) scale = None scale_emb = None denoiser = lambda input, sigma, c, **addtional_model_inputs: self.denoiser( self.model, input, sigma, c, concat_images=concat_images, **addtional_model_inputs ) samples = self.sampler(denoiser, randn, cond, uc=uc, scale=scale, scale_emb=scale_emb) samples = samples.to(self.dtype) return samples @torch.no_grad() def log_conditionings(self, batch: Dict, n: int) -> Dict: """ Defines heuristics to log different conditionings. These can be lists of strings (text-to-image), tensors, ints, ... """ image_h, image_w = batch[self.input_key].shape[3:] log = dict() for embedder in self.conditioner.embedders: if ((self.log_keys is None) or (embedder.input_key in self.log_keys)) and not self.no_cond_log: x = batch[embedder.input_key][:n] if isinstance(x, torch.Tensor): if x.dim() == 1: # class-conditional, convert integer to string x = [str(x[i].item()) for i in range(x.shape[0])] xc = log_txt_as_img((image_h, image_w), x, size=image_h // 4) elif x.dim() == 2: # size and crop cond and the like x = ["x".join([str(xx) for xx in x[i].tolist()]) for i in range(x.shape[0])] xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20) else: raise NotImplementedError() elif isinstance(x, (List, ListConfig)): if isinstance(x[0], str): xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20) else: raise NotImplementedError() else: raise NotImplementedError() log[embedder.input_key] = xc return log @torch.no_grad() def log_video( self, batch: Dict, N: int = 8, ucg_keys: List[str] = None, only_log_video_latents=False, **kwargs, ) -> Dict: conditioner_input_keys = [e.input_key for e in self.conditioner.embedders] if ucg_keys: assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), ( "Each defined ucg key for sampling must be in the provided conditioner input keys," f"but we have {ucg_keys} vs. {conditioner_input_keys}" ) else: ucg_keys = conditioner_input_keys log = dict() x = self.get_input(batch) c, uc = self.conditioner.get_unconditional_conditioning( batch, force_uc_zero_embeddings=ucg_keys if len(self.conditioner.embedders) > 0 else [], ) sampling_kwargs = {} N = min(x.shape[0], N) x = x.to(self.device)[:N] if not self.latent_input: log["inputs"] = x.to(torch.float32) x = x.permute(0, 2, 1, 3, 4).contiguous() z = self.encode_first_stage(x, batch) if not only_log_video_latents: log["reconstructions"] = self.decode_first_stage(z).to(torch.float32) log["reconstructions"] = log["reconstructions"].permute(0, 2, 1, 3, 4).contiguous() z = z.permute(0, 2, 1, 3, 4).contiguous() log.update(self.log_conditionings(batch, N)) for k in c: if isinstance(c[k], torch.Tensor): c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc)) samples = self.sample(c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs) # b t c h w samples = samples.permute(0, 2, 1, 3, 4).contiguous() if only_log_video_latents: latents = 1.0 / self.scale_factor * samples log["latents"] = latents else: samples = self.decode_first_stage(samples).to(torch.float32) samples = samples.permute(0, 2, 1, 3, 4).contiguous() log["samples"] = samples return log