Spaces:
Running
Running
Update space
Browse files
app.py
CHANGED
@@ -1,71 +1,70 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from transformers import pipeline
|
|
|
|
|
4 |
import logging
|
5 |
-
import warnings
|
6 |
-
from threading import Lock
|
7 |
-
|
8 |
-
# Suppress non-critical warnings
|
9 |
-
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
|
10 |
|
11 |
# Setup logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
# Model configuration
|
16 |
-
|
17 |
-
|
18 |
-
TEMPERATURE = 0.1
|
19 |
-
TOP_P = 0.9
|
20 |
-
TOP_K = 60
|
21 |
-
REPETITION_PENALTY = 1.0
|
22 |
|
23 |
# Check for GPU availability
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
logger.info(f"Using device: {device}")
|
26 |
|
27 |
-
# Load the
|
28 |
-
logger.info("Loading model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
pipe = pipeline(
|
30 |
"text-generation",
|
31 |
-
model=
|
|
|
32 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
33 |
-
device_map="auto"
|
34 |
)
|
35 |
|
36 |
-
# Define the chat interface
|
37 |
def chat_interface(user_input, history=None):
|
38 |
if history is None:
|
39 |
history = []
|
40 |
-
|
41 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
42 |
|
43 |
try:
|
44 |
outputs = pipe(
|
45 |
messages,
|
46 |
-
max_new_tokens=
|
47 |
-
temperature=
|
48 |
-
top_p=
|
49 |
-
top_k=
|
50 |
-
repetition_penalty=
|
51 |
)
|
52 |
response = outputs[0]["generated_text"]
|
53 |
history.append((user_input, response))
|
54 |
return "", history
|
55 |
except Exception as e:
|
56 |
-
logger.error(f"Error
|
57 |
return "Error generating response.", history
|
58 |
|
59 |
-
# Define the Gradio interface
|
60 |
with gr.Blocks() as demo:
|
61 |
chatbot = gr.Chatbot()
|
62 |
user_input = gr.Textbox(placeholder="Type your message...")
|
63 |
-
clear_button = gr.Button("Clear Chat")
|
64 |
submit_button = gr.Button("Send")
|
65 |
-
|
66 |
submit_button.click(chat_interface, inputs=[user_input, chatbot], outputs=[user_input, chatbot])
|
67 |
-
user_input.submit(chat_interface, inputs=[user_input, chatbot], outputs=[user_input, chatbot])
|
68 |
-
clear_button.click(lambda: ([], ""), inputs=[], outputs=[chatbot, user_input])
|
69 |
|
70 |
-
|
71 |
-
demo.queue().launch(debug=True, share=True)
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
+
from peft import PeftModel
|
5 |
+
import os
|
6 |
import logging
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Setup logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
# Model configuration
|
13 |
+
BASE_MODEL_ID = "unsloth/Llama-3.2-3B-instruct" # The base model you fine-tuned
|
14 |
+
ADAPTER_MODEL_ID = "ezcz/bright-llama-3b-chat"
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Check for GPU availability
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
logger.info(f"Using device: {device}")
|
19 |
|
20 |
+
# Load the base model and apply the adapter
|
21 |
+
logger.info("Loading base model...")
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, use_fast=True)
|
23 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
BASE_MODEL_ID,
|
25 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
26 |
+
device_map="auto"
|
27 |
+
)
|
28 |
+
|
29 |
+
# Load the adapter model on top of the base model
|
30 |
+
logger.info("Loading adapter weights...")
|
31 |
+
model = PeftModel.from_pretrained(base_model, ADAPTER_MODEL_ID)
|
32 |
+
|
33 |
+
# Create the pipeline with the combined model
|
34 |
pipe = pipeline(
|
35 |
"text-generation",
|
36 |
+
model=model,
|
37 |
+
tokenizer=tokenizer,
|
38 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
39 |
+
device_map="auto"
|
40 |
)
|
41 |
|
|
|
42 |
def chat_interface(user_input, history=None):
|
43 |
if history is None:
|
44 |
history = []
|
45 |
+
|
46 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
47 |
|
48 |
try:
|
49 |
outputs = pipe(
|
50 |
messages,
|
51 |
+
max_new_tokens=256,
|
52 |
+
temperature=0.1,
|
53 |
+
top_p=0.9,
|
54 |
+
top_k=60,
|
55 |
+
repetition_penalty=1.0
|
56 |
)
|
57 |
response = outputs[0]["generated_text"]
|
58 |
history.append((user_input, response))
|
59 |
return "", history
|
60 |
except Exception as e:
|
61 |
+
logger.error(f"Error generating response: {e}")
|
62 |
return "Error generating response.", history
|
63 |
|
|
|
64 |
with gr.Blocks() as demo:
|
65 |
chatbot = gr.Chatbot()
|
66 |
user_input = gr.Textbox(placeholder="Type your message...")
|
|
|
67 |
submit_button = gr.Button("Send")
|
|
|
68 |
submit_button.click(chat_interface, inputs=[user_input, chatbot], outputs=[user_input, chatbot])
|
|
|
|
|
69 |
|
70 |
+
demo.launch(debug=True, share=True)
|
|