Spaces:
Sleeping
Sleeping
fabiencasenave
commited on
Commit
•
f4d7da3
0
Parent(s):
initial commit
Browse files- .gitattributes +35 -0
- Dockerfile +34 -0
- README.md +23 -0
- app.py +246 -0
- environment.yml +15 -0
- gp_torch.py +93 -0
- old_gradio_config/default_docker_config.txt +58 -0
- old_gradio_config/packages.txt +1 -0
- old_gradio_config/pre-requirements.txt +9 -0
- old_gradio_config/requirements.txt +9 -0
- run.sh +5 -0
- training_data.pkl +3 -0
- utils_inference.py +380 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM continuumio/anaconda3:main
|
5 |
+
|
6 |
+
WORKDIR /code
|
7 |
+
COPY ./environment.yml /code/environment.yml
|
8 |
+
|
9 |
+
RUN apt-get update && apt-get install -y libgles2-mesa-dev
|
10 |
+
|
11 |
+
# Create the environment using the environment.yml file
|
12 |
+
RUN conda env create -f /code/environment.yml
|
13 |
+
|
14 |
+
# Set up a new user named "user" with user ID 1000
|
15 |
+
RUN useradd -m -u 1000 user
|
16 |
+
# Switch to the "user" user
|
17 |
+
USER user
|
18 |
+
# Set home to the user's home directory
|
19 |
+
ENV HOME=/home/user \
|
20 |
+
PYTHONPATH=$HOME/app \
|
21 |
+
PYTHONUNBUFFERED=1 \
|
22 |
+
GRADIO_ALLOW_FLAGGING=never \
|
23 |
+
GRADIO_NUM_PORTS=1 \
|
24 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
25 |
+
GRADIO_THEME=huggingface \
|
26 |
+
SYSTEM=spaces
|
27 |
+
|
28 |
+
# Set the working directory to the user's home directory
|
29 |
+
WORKDIR $HOME/app
|
30 |
+
|
31 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
32 |
+
COPY --chown=user . $HOME/app
|
33 |
+
|
34 |
+
CMD ["./run.sh"]
|
README.md
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: MMGP demo
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: blue
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
app_port: 7860
|
9 |
+
---
|
10 |
+
|
11 |
+
This space provides a demo of a experiment from [the paper](https://arxiv.org/abs/2305.12871):
|
12 |
+
|
13 |
+
```
|
14 |
+
@misc{casenave2023mmgpmeshmorphinggaussian,
|
15 |
+
title={MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability},
|
16 |
+
author={Fabien Casenave and Brian Staber and Xavier Roynard},
|
17 |
+
year={2023},
|
18 |
+
eprint={2305.12871},
|
19 |
+
archivePrefix={arXiv},
|
20 |
+
primaryClass={cs.LG},
|
21 |
+
url={https://arxiv.org/abs/2305.12871},
|
22 |
+
}
|
23 |
+
```
|
app.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
from datasets import load_dataset
|
4 |
+
from plaid.containers.sample import Sample
|
5 |
+
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pyrender
|
9 |
+
from trimesh import Trimesh
|
10 |
+
import matplotlib as mpl
|
11 |
+
import matplotlib.cm as cm
|
12 |
+
|
13 |
+
from utils_inference import infer
|
14 |
+
|
15 |
+
|
16 |
+
import os
|
17 |
+
# switch to "osmesa" or "egl" before loading pyrender
|
18 |
+
os.environ["PYOPENGL_PLATFORM"] = "egl"
|
19 |
+
|
20 |
+
|
21 |
+
hf_dataset = load_dataset("PLAID-datasets/AirfRANS_remeshed", split="all_samples")
|
22 |
+
|
23 |
+
file = open('training_data.pkl', 'rb')
|
24 |
+
training_data = pickle.load(file)
|
25 |
+
file.close()
|
26 |
+
|
27 |
+
train_ids = hf_dataset.description['split']['ML4PhySim_Challenge_train']
|
28 |
+
|
29 |
+
out_fields_names = hf_dataset.description['out_fields_names']
|
30 |
+
in_scalars_names = hf_dataset.description['in_scalars_names']
|
31 |
+
out_scalars_names = hf_dataset.description['out_scalars_names']
|
32 |
+
|
33 |
+
|
34 |
+
nb_samples = len(hf_dataset)
|
35 |
+
|
36 |
+
# <h2><b><a href='https://arxiv.org/abs/2305.12871' target='_blank'><b>MMGP</b> demo on the <a href='https://huggingface.co/datasets/PLAID-datasets/AirfRANS_remeshed' target='_blank'><b>AirfRANS_remeshed dataset</b></b></h2>
|
37 |
+
|
38 |
+
# <a href='https://arxiv.org/abs/2305.12871' target='_blank'><b>MMGP paper</b>,
|
39 |
+
|
40 |
+
_HEADER_ = '''
|
41 |
+
<h2><b>MMGP demo on the <a href='https://huggingface.co/datasets/PLAID-datasets/AirfRANS_remeshed' target='_blank'><b>AirfRANS_remeshed dataset</b></b></h2>
|
42 |
+
'''
|
43 |
+
|
44 |
+
_HEADER_2 = '''
|
45 |
+
The model is already trained. The morphing is the same as the one used in the [MMGP paper](https://arxiv.org/abs/2305.12871),
|
46 |
+
but is much less involved than the one used in the winning entry of the [ML4PhySim competition](https://www.codabench.org/competitions/1534/).
|
47 |
+
The training set has 103 samples and is the one used in this competition (some evaluations are out-of-distribution).
|
48 |
+
|
49 |
+
The inference takes approx 5 seconds, and is done from scratch (no precomputation is used during the inference when evaluating samples).
|
50 |
+
This means that the morphing and the finite element interpolations are re-done at each evaluation.
|
51 |
+
|
52 |
+
After choosing a sample id, please change the field name in the dropdown menu to update the visualization.
|
53 |
+
'''
|
54 |
+
|
55 |
+
|
56 |
+
def round_num(num)->str:
|
57 |
+
return '%s' % float('%.3g' % num)
|
58 |
+
|
59 |
+
|
60 |
+
def compute_inference(sample_id_str):
|
61 |
+
sample_id = int(sample_id_str)
|
62 |
+
|
63 |
+
sample_ = hf_dataset[sample_id]["sample"]
|
64 |
+
plaid_sample = Sample.model_validate(pickle.loads(sample_))
|
65 |
+
|
66 |
+
prediction = infer(hf_dataset, sample_id, training_data)
|
67 |
+
reference = {fieldn:plaid_sample.get_field(fieldn) for fieldn in out_fields_names}
|
68 |
+
|
69 |
+
nodes = plaid_sample.get_nodes()
|
70 |
+
if nodes.shape[1] == 2:
|
71 |
+
nodes__ = np.zeros((nodes.shape[0],nodes.shape[1]+1))
|
72 |
+
nodes__[:,:-1] = nodes
|
73 |
+
nodes = nodes__
|
74 |
+
|
75 |
+
triangles = plaid_sample.get_elements()['TRI_3']
|
76 |
+
trimesh = Trimesh(vertices = nodes, faces = triangles)
|
77 |
+
|
78 |
+
file = open('computed_inference.pkl', 'wb')
|
79 |
+
pickle.dump([trimesh, reference, prediction], file)
|
80 |
+
file.close()
|
81 |
+
|
82 |
+
|
83 |
+
str__ = f"Training sample {sample_id_str}"
|
84 |
+
|
85 |
+
if sample_id in train_ids:
|
86 |
+
str__ += " (in the training set)\n\n"
|
87 |
+
else:
|
88 |
+
str__ += " (not in the training set)\n\n"
|
89 |
+
|
90 |
+
str__ += str(plaid_sample)+"\n"
|
91 |
+
|
92 |
+
|
93 |
+
if len(hf_dataset.description['in_scalars_names'])>0:
|
94 |
+
str__ += "\nInput scalars:\n"
|
95 |
+
for sname in hf_dataset.description['in_scalars_names']:
|
96 |
+
str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n"
|
97 |
+
|
98 |
+
str__ += f"\nNumber of nodes in the mesh: {nodes.shape[0]}"
|
99 |
+
|
100 |
+
return str__
|
101 |
+
|
102 |
+
|
103 |
+
def show_pred(fieldn):
|
104 |
+
|
105 |
+
file = open('computed_inference.pkl', 'rb')
|
106 |
+
data = pickle.load(file)
|
107 |
+
file.close()
|
108 |
+
|
109 |
+
trimesh, reference, prediction = data[0], data[1], data[2]
|
110 |
+
|
111 |
+
ref = reference[fieldn]
|
112 |
+
pred = prediction[fieldn]
|
113 |
+
|
114 |
+
norm = mpl.colors.Normalize(vmin=np.min(ref), vmax=np.max(ref))
|
115 |
+
cmap = cm.seismic#cm.coolwarm
|
116 |
+
m = cm.ScalarMappable(norm=norm, cmap=cmap)
|
117 |
+
vertex_colors = m.to_rgba(pred)[:,:3]
|
118 |
+
|
119 |
+
trimesh.visual.vertex_colors = vertex_colors
|
120 |
+
|
121 |
+
mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)
|
122 |
+
|
123 |
+
# compose scene
|
124 |
+
scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
|
125 |
+
camera = pyrender.PerspectiveCamera( yfov=np.pi / 3.0)
|
126 |
+
light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)
|
127 |
+
|
128 |
+
scene.add(mesh, pose= np.eye(4))
|
129 |
+
scene.add(light, pose= np.eye(4))
|
130 |
+
|
131 |
+
scene.add(camera, pose=[[ 1, 0, 0, 1],
|
132 |
+
[ 0, 1, 0, 0],
|
133 |
+
[ 0, 0, 1, 6],
|
134 |
+
[ 0, 0, 0, 1]])
|
135 |
+
|
136 |
+
# render scene
|
137 |
+
r = pyrender.OffscreenRenderer(1024, 1024)
|
138 |
+
color, _ = r.render(scene)
|
139 |
+
|
140 |
+
return color
|
141 |
+
|
142 |
+
|
143 |
+
def show_ref(fieldn):
|
144 |
+
|
145 |
+
file = open('computed_inference.pkl', 'rb')
|
146 |
+
data = pickle.load(file)
|
147 |
+
file.close()
|
148 |
+
|
149 |
+
trimesh, reference, prediction = data[0], data[1], data[2]
|
150 |
+
|
151 |
+
ref = reference[fieldn]
|
152 |
+
|
153 |
+
norm = mpl.colors.Normalize(vmin=np.min(ref), vmax=np.max(ref))
|
154 |
+
cmap = cm.seismic#cm.coolwarm
|
155 |
+
m = cm.ScalarMappable(norm=norm, cmap=cmap)
|
156 |
+
vertex_colors = m.to_rgba(ref)[:,:3]
|
157 |
+
|
158 |
+
trimesh.visual.vertex_colors = vertex_colors
|
159 |
+
|
160 |
+
mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)
|
161 |
+
|
162 |
+
# compose scene
|
163 |
+
scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
|
164 |
+
camera = pyrender.PerspectiveCamera( yfov=np.pi / 3.0)
|
165 |
+
light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)
|
166 |
+
|
167 |
+
scene.add(mesh, pose= np.eye(4))
|
168 |
+
scene.add(light, pose= np.eye(4))
|
169 |
+
|
170 |
+
scene.add(camera, pose=[[ 1, 0, 0, 1],
|
171 |
+
[ 0, 1, 0, 0],
|
172 |
+
[ 0, 0, 1, 6],
|
173 |
+
[ 0, 0, 0, 1]])
|
174 |
+
|
175 |
+
# render scene
|
176 |
+
r = pyrender.OffscreenRenderer(1024, 1024)
|
177 |
+
color, _ = r.render(scene)
|
178 |
+
|
179 |
+
return color
|
180 |
+
|
181 |
+
|
182 |
+
def show_err(fieldn):
|
183 |
+
|
184 |
+
file = open('computed_inference.pkl', 'rb')
|
185 |
+
data = pickle.load(file)
|
186 |
+
file.close()
|
187 |
+
|
188 |
+
trimesh, reference, prediction = data[0], data[1], data[2]
|
189 |
+
|
190 |
+
ref = reference[fieldn]
|
191 |
+
pred = prediction[fieldn]
|
192 |
+
|
193 |
+
norm = mpl.colors.Normalize(vmin=np.min(ref), vmax=np.max(ref))
|
194 |
+
cmap = cm.seismic#cm.coolwarm
|
195 |
+
m = cm.ScalarMappable(norm=norm, cmap=cmap)
|
196 |
+
vertex_colors = m.to_rgba(pred-ref)[:,:3]
|
197 |
+
|
198 |
+
trimesh.visual.vertex_colors = vertex_colors
|
199 |
+
|
200 |
+
mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)
|
201 |
+
|
202 |
+
# compose scene
|
203 |
+
scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
|
204 |
+
camera = pyrender.PerspectiveCamera( yfov=np.pi / 3.0)
|
205 |
+
light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)
|
206 |
+
|
207 |
+
scene.add(mesh, pose= np.eye(4))
|
208 |
+
scene.add(light, pose= np.eye(4))
|
209 |
+
|
210 |
+
scene.add(camera, pose=[[ 1, 0, 0, 1],
|
211 |
+
[ 0, 1, 0, 0],
|
212 |
+
[ 0, 0, 1, 6],
|
213 |
+
[ 0, 0, 0, 1]])
|
214 |
+
|
215 |
+
# render scene
|
216 |
+
r = pyrender.OffscreenRenderer(1024, 1024)
|
217 |
+
color, _ = r.render(scene)
|
218 |
+
|
219 |
+
return color
|
220 |
+
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
|
224 |
+
with gr.Blocks() as demo:
|
225 |
+
|
226 |
+
# trimesh, reference, prediction = compute_inference(0)
|
227 |
+
gr.Markdown(_HEADER_)
|
228 |
+
gr.Markdown(_HEADER_2)
|
229 |
+
with gr.Row(variant="panel"):
|
230 |
+
with gr.Column():
|
231 |
+
d1 = gr.Slider(0, nb_samples-1, value=0, label="Training sample id", info="Choose between 0 and "+str(nb_samples-1))
|
232 |
+
# output1 = gr.Text(label="Inference status")
|
233 |
+
output4 = gr.Text(label="Information on sample")
|
234 |
+
output5 = gr.Image(label="Error")
|
235 |
+
with gr.Column():
|
236 |
+
d2 = gr.Dropdown(out_fields_names, value=out_fields_names[0], label="Field name")
|
237 |
+
output2 = gr.Image(label="Reference")
|
238 |
+
output3 = gr.Image(label="MMGP prediction")
|
239 |
+
|
240 |
+
# d1.input(compute_inference, [d1], [output1, output4])
|
241 |
+
d1.input(compute_inference, [d1], [output4])
|
242 |
+
d2.input(show_ref, [d2], [output2])
|
243 |
+
d2.input(show_pred, [d2], [output3])
|
244 |
+
d2.input(show_err, [d2], [output5])
|
245 |
+
|
246 |
+
demo.launch()
|
environment.yml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: demo
|
2 |
+
channels:
|
3 |
+
- conda-forge
|
4 |
+
- nodefaults
|
5 |
+
|
6 |
+
dependencies:
|
7 |
+
- python=3.11
|
8 |
+
- muscat
|
9 |
+
- plaid
|
10 |
+
- datasets
|
11 |
+
- pyrender
|
12 |
+
- matplotlib
|
13 |
+
- gradio
|
14 |
+
- pytorch
|
15 |
+
# - pyopengl
|
gp_torch.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
class GaussianProcessRegressor(nn.Module):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
length_scale=1.0,
|
9 |
+
noise_scale=1.0,
|
10 |
+
amplitude_scale=1.0,
|
11 |
+
):
|
12 |
+
super().__init__()
|
13 |
+
if isinstance(length_scale, float):
|
14 |
+
length_scale = np.array([length_scale])
|
15 |
+
elif isinstance(length_scale, np.ndarray):
|
16 |
+
assert length_scale.ndim == 1
|
17 |
+
else:
|
18 |
+
raise TypeError()
|
19 |
+
|
20 |
+
self.register_parameter(
|
21 |
+
"length_scale_",
|
22 |
+
param=nn.Parameter(torch.Tensor(np.log(length_scale)), requires_grad=True),
|
23 |
+
)
|
24 |
+
self.register_parameter(
|
25 |
+
"noise_scale_",
|
26 |
+
param=nn.Parameter(torch.tensor(np.log(noise_scale)), requires_grad=True),
|
27 |
+
)
|
28 |
+
self.register_parameter(
|
29 |
+
"amplitude_scale_",
|
30 |
+
param=nn.Parameter(
|
31 |
+
torch.tensor(np.log(amplitude_scale)), requires_grad=True
|
32 |
+
),
|
33 |
+
)
|
34 |
+
|
35 |
+
self.nll = None
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
alpha = self.alpha
|
39 |
+
k = self.Kxy(self.X, x)
|
40 |
+
mu = k.T.mm(alpha)
|
41 |
+
return mu
|
42 |
+
|
43 |
+
def log_marginal_likelihood(self, X, y):
|
44 |
+
D = X.shape[1]
|
45 |
+
K = self.Kxx(X)
|
46 |
+
L = torch.linalg.cholesky(K)
|
47 |
+
alpha = torch.linalg.solve(L.T, torch.linalg.solve(L, y))
|
48 |
+
marginal_likelihood = (
|
49 |
+
-0.5 * y.T.mm(alpha)
|
50 |
+
- torch.log(torch.diag(L)).sum()
|
51 |
+
- D * 0.5 * np.log(2 * np.pi)
|
52 |
+
)
|
53 |
+
self.L = L
|
54 |
+
self.alpha = alpha
|
55 |
+
self.K = K
|
56 |
+
return marginal_likelihood
|
57 |
+
|
58 |
+
def Kxx(self, X):
|
59 |
+
param = self.length_scale_.exp().sqrt()
|
60 |
+
sqdist = torch.cdist(X / param[None], X / param[None]) ** 2
|
61 |
+
|
62 |
+
res = self.amplitude_scale_.exp() * torch.exp(-0.5 * sqdist) + self.noise_scale_.exp() * torch.eye(len(X)).type_as(X)
|
63 |
+
|
64 |
+
return res
|
65 |
+
|
66 |
+
def Kxy(self, X, Z):
|
67 |
+
param = self.length_scale_.exp().sqrt()
|
68 |
+
sqdist = torch.cdist(X / param[None], Z / param[None]) ** 2
|
69 |
+
res = self.amplitude_scale_.exp() * torch.exp(-0.5 * sqdist)
|
70 |
+
|
71 |
+
return res
|
72 |
+
|
73 |
+
def fit(self, X, y, opt, num_steps):
|
74 |
+
assert X.shape[1] == len(self.length_scale_)
|
75 |
+
self.y = y
|
76 |
+
self.X = X
|
77 |
+
|
78 |
+
scheduler = torch.optim.lr_scheduler.ExponentialLR(opt, gamma=0.9)
|
79 |
+
|
80 |
+
self.train()
|
81 |
+
nll_hist = []
|
82 |
+
for it in range(num_steps):
|
83 |
+
opt.zero_grad()
|
84 |
+
try:
|
85 |
+
nll = -self.log_marginal_likelihood(self.X, self.y).sum()
|
86 |
+
except torch.linalg.LinAlgError:
|
87 |
+
break
|
88 |
+
nll.backward()
|
89 |
+
opt.step()
|
90 |
+
if it%10==0 and it<1000:
|
91 |
+
scheduler.step()
|
92 |
+
nll_hist.append(nll.item())
|
93 |
+
return nll_hist
|
old_gradio_config/default_docker_config.txt
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# FROM python:3.10
|
2 |
+
|
3 |
+
# RUN useradd -m -u 1000 user
|
4 |
+
|
5 |
+
# RUN apt-get update && apt-get install -y fakeroot && mv /usr/bin/apt-get /usr/bin/.apt-get && echo '#!/usr/bin/env sh\nfakeroot /usr/bin/.apt-get $@' > /usr/bin/apt-get && chmod +x /usr/bin/apt-get && rm -rf /var/lib/apt/lists/* && useradd -m -u 1000 user
|
6 |
+
|
7 |
+
# COPY --chown=1000:1000 --from=root / /
|
8 |
+
|
9 |
+
# WORKDIR /home/user/app
|
10 |
+
|
11 |
+
# RUN apt-get update && apt-get install -y git git-lfs ffmpeg libsm6 libxext6 cmake rsync libgl1-mesa-glx libgles2-mesa-dev && rm -rf /var/lib/apt/lists/* && git lfs install
|
12 |
+
|
13 |
+
# RUN pip install --no-cache-dir pip==22.3.1 && pip install --no-cache-dir datasets "huggingface-hub>=0.19" "hf-transfer>=0.1.4" "protobuf<4" "click<8.1" "pydantic~=1.0"
|
14 |
+
|
15 |
+
# RUN --mount=target=/tmp/pre-requirements.txt,source=pre-requirements.txt pip install --no-cache-dir -r /tmp/pre-requirements.txt
|
16 |
+
|
17 |
+
# RUN --mount=target=/tmp/requirements.txt,source=requirements.txt pip install --no-cache-dir -r /tmp/requirements.txt
|
18 |
+
|
19 |
+
# RUN export MUSCAT_USE_EIGENCYEIGEN=1
|
20 |
+
|
21 |
+
# RUN wget https://boostorg.jfrog.io/artifactory/main/release/1.82.0/source/boost_1_82_0.zip
|
22 |
+
|
23 |
+
# RUN unzip boost_1_82_0.zip
|
24 |
+
|
25 |
+
# RUN MUSCAT_USE_EIGENCYEIGEN=1
|
26 |
+
|
27 |
+
# RUN MUSCAT_EXTRA_INCLUDE_DIRS=%cd%\boost_1_82_0
|
28 |
+
|
29 |
+
# RUN pip install Muscat@https://gitlab.com/drti/muscat/-/archive/2.2.1/muscat-2.0.2.tar.bz2
|
30 |
+
|
31 |
+
# RUN pip install --no-cache-dir gradio[oauth]==4.37.1 "uvicorn>=0.14.0" spaces
|
32 |
+
|
33 |
+
# COPY --link --chown=1000 ./ /home/user/app
|
34 |
+
|
35 |
+
# RUN pip freeze > /tmp/freeze.txt
|
36 |
+
|
37 |
+
# COPY --from=pipfreeze --link --chown=1000 /tmp/freeze.txt /tmp/freeze.txt
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# # Set up a new user named "user" with user ID 1000
|
43 |
+
# RUN useradd -m -u 1000 user
|
44 |
+
|
45 |
+
# # Switch to the "user" user
|
46 |
+
# USER user
|
47 |
+
|
48 |
+
# # Set home to the user's home directory
|
49 |
+
# ENV HOME=/home/user \
|
50 |
+
# PATH=/home/user/.local/bin:$PATH
|
51 |
+
|
52 |
+
# # Set the working directory to the user's home directory
|
53 |
+
# WORKDIR $HOME/app
|
54 |
+
|
55 |
+
# # Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
56 |
+
# COPY --chown=user . $HOME/app
|
57 |
+
|
58 |
+
# CMD ["python", "app.py"]
|
old_gradio_config/packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libgles2-mesa-dev
|
old_gradio_config/pre-requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
eigency
|
2 |
+
mkl
|
3 |
+
numpy
|
4 |
+
sympy
|
5 |
+
mkl-include
|
6 |
+
cython
|
7 |
+
wheel
|
8 |
+
tbb-devel
|
9 |
+
dill
|
old_gradio_config/requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://gitlab.com/drti/plaid@version_0.0.10_python310
|
2 |
+
numpy==1.26.4
|
3 |
+
tqdm
|
4 |
+
pyyaml
|
5 |
+
pycgns
|
6 |
+
scikit-learn
|
7 |
+
datasets
|
8 |
+
pyrender
|
9 |
+
matplotlib
|
run.sh
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
CONDA_ENV=$(head -1 /code/environment.yml | cut -d" " -f2)
|
3 |
+
eval "$(conda shell.bash hook)"
|
4 |
+
conda activate $CONDA_ENV
|
5 |
+
python app.py
|
training_data.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a70d30164ee7489c55edb72d37a48c78a62a9d846b2fd2bda55574984537244
|
3 |
+
size 22328714
|
utils_inference.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import Muscat.Containers.ElementsDescription as ED
|
2 |
+
|
3 |
+
from Muscat.FE.FETools import PrepareFEComputation
|
4 |
+
from Muscat.FE.Fields.FEField import FEField
|
5 |
+
import Muscat.Containers.MeshModificationTools as MMT
|
6 |
+
|
7 |
+
|
8 |
+
from Muscat.Containers import MeshGraphTools as MGT
|
9 |
+
from Muscat.Containers.Filters import FilterObjects as FO
|
10 |
+
from Muscat.Containers.Filters import FilterOperators as FOp
|
11 |
+
import Muscat.Containers.MeshInspectionTools as MIT
|
12 |
+
|
13 |
+
|
14 |
+
out_fields_names = ['Ux', 'Uy', 'p', 'nut']
|
15 |
+
in_scalars_names = ['angle_of_attack', 'inlet_velocity']
|
16 |
+
|
17 |
+
from Muscat.Containers.NativeTransfer import NativeTransfer
|
18 |
+
import copy
|
19 |
+
import bisect
|
20 |
+
import numpy as np
|
21 |
+
from scipy import spatial
|
22 |
+
import pickle
|
23 |
+
from Muscat.Bridges.CGNSBridge import CGNSToMesh
|
24 |
+
|
25 |
+
|
26 |
+
import torch
|
27 |
+
device = torch.device("cpu")
|
28 |
+
|
29 |
+
|
30 |
+
num_steps = [2_000]
|
31 |
+
|
32 |
+
from plaid.containers.dataset import Sample
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
def pretreat_sample(mesh):
|
39 |
+
###################
|
40 |
+
# Compute the skin of the mesh (containing the external boundary and the airfoil boundary)
|
41 |
+
###################
|
42 |
+
MMT.ComputeSkin(mesh, md = 2, inPlace = True)
|
43 |
+
|
44 |
+
###################
|
45 |
+
# Extract ids of the bar elements corresponding to the airfoil
|
46 |
+
###################
|
47 |
+
ff1 = FO.ElementFilter(zone = lambda p: (-p[:,0]-1.99))
|
48 |
+
ff2 = FO.ElementFilter(zone = lambda p: (p[:,0]-3.99))
|
49 |
+
ff3 = FO.ElementFilter(zone = lambda p: (-p[:,1]-1.49))
|
50 |
+
ff4 = FO.ElementFilter(zone = lambda p: (p[:,1]-1.49))
|
51 |
+
efAirfoil = FOp.IntersectionFilter(filters=[ff1, ff2, ff3, ff4])
|
52 |
+
airfoil_ids = efAirfoil.GetIdsToTreat(mesh, "bar2")
|
53 |
+
|
54 |
+
###################
|
55 |
+
# Preparations
|
56 |
+
###################
|
57 |
+
ext_bound = np.setdiff1d(mesh.elements["bar2"].GetTag("Skin").GetIds(), airfoil_ids)
|
58 |
+
mesh.elements["bar2"].GetTag("External_boundary").SetIds(ext_bound)
|
59 |
+
mesh.elements["bar2"].GetTag("Airfoil").SetIds(airfoil_ids)
|
60 |
+
nfExtBoundary = FO.NodeFilter(eTag = "External_boundary")
|
61 |
+
nodeIndexExtBoundary = nfExtBoundary.GetNodesIndices(mesh)
|
62 |
+
mesh.GetNodalTag("External_boundary").AddToTag(nodeIndexExtBoundary)
|
63 |
+
nfAirfoil = FO.NodeFilter(eTag = "Airfoil")
|
64 |
+
nodeIndexAirfoil = nfAirfoil.GetNodesIndices(mesh)
|
65 |
+
mesh.GetNodalTag("Airfoil").AddToTag(nodeIndexAirfoil)
|
66 |
+
|
67 |
+
|
68 |
+
###################
|
69 |
+
# Add node tag for the intrado and extrado
|
70 |
+
###################
|
71 |
+
nfAirfoil = FO.NodeFilter(eTag = "Airfoil")
|
72 |
+
nodeIndexAirfoil = nfAirfoil.GetNodesIndices(mesh)
|
73 |
+
mesh.GetNodalTag("Airfoil").AddToTag(nodeIndexAirfoil)
|
74 |
+
|
75 |
+
airfoil = ExtractAirfoil(mesh)
|
76 |
+
indices_extrado = airfoil[0][0]
|
77 |
+
indices_intrado = airfoil[0][1]
|
78 |
+
mesh.GetNodalTag("Extrado").AddToTag(indices_extrado)
|
79 |
+
mesh.GetNodalTag("Intrado").AddToTag(indices_intrado)
|
80 |
+
|
81 |
+
efExtrado = FO.ElementFilter(nTag = "Extrado")
|
82 |
+
efIntrado = FO.ElementFilter(nTag = "Intrado")
|
83 |
+
mesh.elements["bar2"].GetTag("Extrado").SetIds(efExtrado.GetIdsToTreat(mesh, "bar2"))
|
84 |
+
mesh.elements["bar2"].GetTag("Intrado").SetIds(efIntrado.GetIdsToTreat(mesh, "bar2"))
|
85 |
+
|
86 |
+
|
87 |
+
def ExtractPathFromMeshOfBars(mesh, startingClosestToPoint, trigo_dir = True):
|
88 |
+
|
89 |
+
nodeGraph0Airfoild = MGT.ComputeNodeToNodeGraph(mesh, dimensionality=1)
|
90 |
+
nodeGraphAirfoild = [list(nodeGraph0Airfoild[i].keys()) for i in range(nodeGraph0Airfoild.number_of_nodes())]
|
91 |
+
|
92 |
+
tree = spatial.KDTree(mesh.nodes)
|
93 |
+
_, indicesTrailEdge = tree.query([startingClosestToPoint], k=1)
|
94 |
+
|
95 |
+
p1init = indicesTrailEdge[0]
|
96 |
+
|
97 |
+
temp1=mesh.nodes[nodeGraphAirfoild[p1init][0]][1]
|
98 |
+
temp2=mesh.nodes[nodeGraphAirfoild[p1init][1]][1]
|
99 |
+
|
100 |
+
if trigo_dir:
|
101 |
+
condition = temp1 > temp2
|
102 |
+
else:
|
103 |
+
condition = temp1 < temp2
|
104 |
+
|
105 |
+
if condition:
|
106 |
+
p2 = nodeGraphAirfoild[p1init][0]
|
107 |
+
else:
|
108 |
+
p2 = nodeGraphAirfoild[p1init][1]
|
109 |
+
|
110 |
+
p1 = p1init
|
111 |
+
path = [p1, p2]
|
112 |
+
while p2 != p1init:
|
113 |
+
p2save = p2
|
114 |
+
tempArray = np.asarray(nodeGraphAirfoild[p2])
|
115 |
+
p2 = tempArray[tempArray!=p1][0]
|
116 |
+
p1 = p2save
|
117 |
+
path.append(p2)
|
118 |
+
|
119 |
+
return path
|
120 |
+
|
121 |
+
|
122 |
+
def ExtractAirfoil(mesh):
|
123 |
+
|
124 |
+
efAirfoil = FO.ElementFilter(elementType=ED.Bar_2, eTag=["Airfoil"])
|
125 |
+
airfoilMesh = MIT.ExtractElementsByElementFilter(mesh, efAirfoil)
|
126 |
+
|
127 |
+
path = ExtractPathFromMeshOfBars(airfoilMesh, np.array([1.,0.]))
|
128 |
+
|
129 |
+
tree = spatial.KDTree(airfoilMesh.nodes[path])
|
130 |
+
_, indicesLeadEdge = tree.query([[0.,0.]], k=1)
|
131 |
+
|
132 |
+
indices_extrado = path[:indicesLeadEdge[0]+1]
|
133 |
+
indices_intrado = path[indicesLeadEdge[0]:]
|
134 |
+
|
135 |
+
indices_airfoil = [indices_extrado, indices_intrado]
|
136 |
+
|
137 |
+
nodes_extrado = mesh.nodes[indices_extrado]
|
138 |
+
nodes_intrado = mesh.nodes[indices_intrado]
|
139 |
+
|
140 |
+
nodes_airfoil = [nodes_extrado, nodes_intrado]
|
141 |
+
|
142 |
+
return indices_airfoil, nodes_airfoil
|
143 |
+
|
144 |
+
|
145 |
+
def computeAirfoilCurvAbscissa(airfoil):
|
146 |
+
|
147 |
+
indices_airfoil = airfoil[0]
|
148 |
+
nodes_airfoil = airfoil[1]
|
149 |
+
|
150 |
+
curv_abscissa = []
|
151 |
+
for i in range(2):
|
152 |
+
local_curv_abscissa = np.zeros(len(indices_airfoil[i]))
|
153 |
+
for j in range(1,len(local_curv_abscissa)):
|
154 |
+
local_curv_abscissa[j] = local_curv_abscissa[j-1] + np.linalg.norm(nodes_airfoil[i][j]-nodes_airfoil[i][j-1])
|
155 |
+
local_curv_abscissa /= local_curv_abscissa[-1]
|
156 |
+
curv_abscissa.append(local_curv_abscissa)
|
157 |
+
|
158 |
+
return curv_abscissa
|
159 |
+
|
160 |
+
|
161 |
+
def MapAirfoil(airfoil_ref, curv_abscissa_ref, curv_abscissa):
|
162 |
+
|
163 |
+
nodes_airfoil_ref = airfoil_ref[1]
|
164 |
+
dim_nodes = nodes_airfoil_ref[0][0].shape[0]
|
165 |
+
|
166 |
+
mapped_airfoil = []
|
167 |
+
for i in range(2):
|
168 |
+
local_mapped_airfoil = np.zeros((len(curv_abscissa[i])-1, dim_nodes))
|
169 |
+
for j in range(len(curv_abscissa[i])-1):
|
170 |
+
index = max(bisect.bisect_right(curv_abscissa_ref[i], curv_abscissa[i][j]) - 1, 0)
|
171 |
+
|
172 |
+
a = nodes_airfoil_ref[i][index]
|
173 |
+
b = nodes_airfoil_ref[i][index+1]
|
174 |
+
dl = curv_abscissa[i][j] - curv_abscissa_ref[i][index]
|
175 |
+
dir = (b-a)/np.linalg.norm(b-a)
|
176 |
+
local_mapped_airfoil[j] = a + dl * dir
|
177 |
+
mapped_airfoil.append(local_mapped_airfoil)
|
178 |
+
|
179 |
+
return mapped_airfoil
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
def GetFieldTransferOpCppStep1(inputField, nbThreads = None):
|
185 |
+
|
186 |
+
method="Interp/Clamp"
|
187 |
+
|
188 |
+
nt = NativeTransfer()
|
189 |
+
|
190 |
+
if nbThreads is not None:
|
191 |
+
nt.SetMaxConcurrency(nbThreads)
|
192 |
+
|
193 |
+
nt.SetTransferMethod(method)
|
194 |
+
defaultOptions = {"usePointSearch": True,
|
195 |
+
"useElementSearch": False,
|
196 |
+
"useElementSearchFast": False,
|
197 |
+
"useEdgeSearch": True,
|
198 |
+
}
|
199 |
+
|
200 |
+
options = {}
|
201 |
+
|
202 |
+
defaultOptions.update(options)
|
203 |
+
|
204 |
+
dispatch = {"usePointSearch": nt.SetUsePointSearch,
|
205 |
+
"useElementSearch": nt.SetUseElementSearch,
|
206 |
+
"useElementSearchFast": nt.SetUseElementSearchFast,
|
207 |
+
"useEdgeSearch": nt.SetUseEdgeSearch,
|
208 |
+
"DifferentialOperator": nt.SetDifferentialOperator,
|
209 |
+
}
|
210 |
+
|
211 |
+
for k, v in defaultOptions.items():
|
212 |
+
if k in dispatch.keys():
|
213 |
+
dispatch[k](v)
|
214 |
+
else:
|
215 |
+
raise RuntimeError(f"Option {k} not valid")
|
216 |
+
|
217 |
+
nt.SetSourceFEField(inputField, None)
|
218 |
+
|
219 |
+
return nt
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
def GetFieldTransferOpCppStep2(nt, targetPoints):
|
224 |
+
|
225 |
+
nt.SetTargetPoints(targetPoints)
|
226 |
+
|
227 |
+
nt.Compute()
|
228 |
+
op = nt.GetOperator()
|
229 |
+
status = nt.GetStatus()
|
230 |
+
return op, status
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
def morph_sample(mesh, airfoil_0, curv_abscissa_0):
|
236 |
+
|
237 |
+
airfoil_1 = ExtractAirfoil(mesh)
|
238 |
+
curv_abscissa_1 = computeAirfoilCurvAbscissa(airfoil_1)
|
239 |
+
|
240 |
+
mapped_airfoil = MapAirfoil(airfoil_0, curv_abscissa_0, curv_abscissa_1)
|
241 |
+
|
242 |
+
##############################################################
|
243 |
+
# Compute global target displacement and masks for RBF field morphing
|
244 |
+
##############################################################
|
245 |
+
indices_extrado_to_morph_1 = airfoil_1[0][0][:-1]
|
246 |
+
indices_intrado_to_morph_1 = airfoil_1[0][1][:-1]
|
247 |
+
other_boundary_ids_1 = mesh.GetNodalTag("External_boundary").GetIds()
|
248 |
+
|
249 |
+
l1 = len(indices_extrado_to_morph_1)
|
250 |
+
l2 = len(indices_intrado_to_morph_1)
|
251 |
+
l3 = len(other_boundary_ids_1)
|
252 |
+
|
253 |
+
targetDisplacement = np.zeros((l1 + l2 + l3, 2))
|
254 |
+
targetDisplacementMask = np.zeros((l1 + l2 + l3), dtype = int)
|
255 |
+
|
256 |
+
targetDisplacement[:l1] = mapped_airfoil[0] - mesh.nodes[indices_extrado_to_morph_1]
|
257 |
+
targetDisplacement[l1:l1+l2] = mapped_airfoil[1] - mesh.nodes[indices_intrado_to_morph_1]
|
258 |
+
targetDisplacement[l1+l2:l1+l2+l3] = np.zeros((l3,2))
|
259 |
+
|
260 |
+
targetDisplacementMask[:l1] = indices_extrado_to_morph_1
|
261 |
+
targetDisplacementMask[l1:l1+l2] = indices_intrado_to_morph_1
|
262 |
+
targetDisplacementMask[l1+l2:l1+l2+l3] = other_boundary_ids_1
|
263 |
+
|
264 |
+
##############################################################
|
265 |
+
# Compute the morphing
|
266 |
+
##############################################################
|
267 |
+
|
268 |
+
# RBF morphing
|
269 |
+
|
270 |
+
mesh_nodes = mesh.nodes.copy()
|
271 |
+
morphed_nodes = MMT.Morphing(mesh, targetDisplacement, targetDisplacementMask, radius=None)
|
272 |
+
mesh.nodes = morphed_nodes
|
273 |
+
|
274 |
+
mesh.nodeFields['X'] = mesh_nodes[:,0]
|
275 |
+
mesh.nodeFields['Y'] = mesh_nodes[:,1]
|
276 |
+
|
277 |
+
return mesh
|
278 |
+
|
279 |
+
|
280 |
+
def project_sample(morphed_mesh, morphed_mesh_0):
|
281 |
+
projected_mesh = copy.deepcopy(morphed_mesh_0)
|
282 |
+
|
283 |
+
space_, numberings_, _, _ = PrepareFEComputation(morphed_mesh)
|
284 |
+
inputFEField = FEField(name="dummy", mesh=morphed_mesh, space=space_, numbering=numberings_[0])
|
285 |
+
|
286 |
+
nt = GetFieldTransferOpCppStep1(inputFEField, 1)
|
287 |
+
FE_interpolation_op, _ = GetFieldTransferOpCppStep2(nt, morphed_mesh_0.nodes)
|
288 |
+
|
289 |
+
for pfn in out_fields_names + ['X', 'Y']:
|
290 |
+
projected_mesh.nodeFields[pfn] = FE_interpolation_op.dot(morphed_mesh.nodeFields[pfn])
|
291 |
+
|
292 |
+
return projected_mesh
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
def pretreat_morph_and_project_mesh(i_sample, dataset, indices, morphed_mesh_0, airfoil_0, curv_abscissa_0):
|
298 |
+
|
299 |
+
|
300 |
+
###################
|
301 |
+
## 1) Pretreat data
|
302 |
+
###################
|
303 |
+
sample = Sample.model_validate(pickle.loads(dataset[int(indices[i_sample])]["sample"]))
|
304 |
+
mesh = CGNSToMesh(sample.get_mesh())
|
305 |
+
pretreat_sample(mesh)
|
306 |
+
|
307 |
+
###################
|
308 |
+
## 2) Morph data
|
309 |
+
###################
|
310 |
+
morphed_mesh = morph_sample(mesh, airfoil_0, curv_abscissa_0)
|
311 |
+
|
312 |
+
# print("morphed_mesh =", morphed_mesh)
|
313 |
+
|
314 |
+
# from Muscat.IO import XdmfWriter as XW
|
315 |
+
# XW.WriteMeshToXdmf("morphed_mesh.xdmf", morphed_mesh)
|
316 |
+
|
317 |
+
###################
|
318 |
+
## 3) Project data
|
319 |
+
###################
|
320 |
+
projected_mesh = project_sample(morphed_mesh, morphed_mesh_0)
|
321 |
+
|
322 |
+
# print("projected_mesh =", projected_mesh)
|
323 |
+
|
324 |
+
# from Muscat.IO import XdmfWriter as XW
|
325 |
+
# XW.WriteMeshToXdmf("projected_mesh.xdmf", projected_mesh)
|
326 |
+
|
327 |
+
in_scalars = [sample.get_scalar(sn) for sn in in_scalars_names]
|
328 |
+
|
329 |
+
return [projected_mesh, in_scalars, morphed_mesh.nodes]
|
330 |
+
|
331 |
+
|
332 |
+
def infer(dataset, indice, training_data):
|
333 |
+
|
334 |
+
common_mesh, correlationOperator2c, airfoil_0, curv_abscissa_0, scalar_scalers, scalerX, pca_clouds, pca_fields, y_scalers, kmodels, X_train, y_train = training_data
|
335 |
+
|
336 |
+
projected_mesh, in_scalars, morphed_mesh_nodes = pretreat_morph_and_project_mesh(indice, dataset = dataset, indices = np.arange(len(dataset)), morphed_mesh_0 = common_mesh, airfoil_0 = airfoil_0, curv_abscissa_0 = curv_abscissa_0)
|
337 |
+
|
338 |
+
space_, numberings_, _, _ = PrepareFEComputation(common_mesh)
|
339 |
+
inputFEField_0 = FEField(name="dummy", mesh=common_mesh, space=space_, numbering=numberings_[0])
|
340 |
+
nt_0 = GetFieldTransferOpCppStep1(inputFEField_0, nbThreads = 2)
|
341 |
+
|
342 |
+
iffo = GetFieldTransferOpCppStep2(nt_0, morphed_mesh_nodes)[0]
|
343 |
+
|
344 |
+
clouds = np.stack([projected_mesh.nodeFields["X"], projected_mesh.nodeFields["Y"]], axis=1)
|
345 |
+
|
346 |
+
scalars = np.array(in_scalars)
|
347 |
+
|
348 |
+
clouds = clouds.reshape(-1, 1)
|
349 |
+
|
350 |
+
X_pca = np.dot(pca_clouds, correlationOperator2c.dot(clouds)).T
|
351 |
+
X_scalars = scalar_scalers.transform(scalars.reshape(1, -1))
|
352 |
+
unscaled_X = np.concatenate([X_pca, X_scalars], axis=-1)
|
353 |
+
X = scalerX.transform(unscaled_X)
|
354 |
+
|
355 |
+
|
356 |
+
predictions = {}
|
357 |
+
y = []
|
358 |
+
for i, fn in enumerate(out_fields_names):
|
359 |
+
|
360 |
+
X_ = torch.tensor(X, dtype=torch.float64).to(device)
|
361 |
+
|
362 |
+
output_dim = pca_fields[0].shape[0]
|
363 |
+
|
364 |
+
n_samples = 1
|
365 |
+
y_pred_i = np.empty((n_samples, output_dim, len(num_steps)))
|
366 |
+
|
367 |
+
for j in range(output_dim):
|
368 |
+
for k in range(len(num_steps)):
|
369 |
+
y_pred_i[:,j,k] = kmodels[i][j][k](X_).detach().cpu().numpy().squeeze()
|
370 |
+
|
371 |
+
y.append(y_pred_i)
|
372 |
+
y_pred_i = np.mean(y_pred_i, axis = 2)
|
373 |
+
|
374 |
+
y_pred_i = y_scalers[i].inverse_transform(y_pred_i)
|
375 |
+
|
376 |
+
y_pred_common_i = np.dot(y_pred_i, pca_fields[i]).flatten()
|
377 |
+
|
378 |
+
predictions[fn] = iffo.dot(y_pred_common_i)
|
379 |
+
|
380 |
+
return predictions
|