MaskCut / model.py
hysts's picture
hysts HF staff
Add files
73cbad1
# This file is adapted from https://github.com/facebookresearch/CutLER/blob/077938c626341723050a1971107af552a6ca6697/maskcut/demo.py
# The original license file is the file named LICENSE.CutLER in this repo.
import sys
import numpy as np
import PIL.Image as Image
import torch
from scipy import ndimage
sys.path.append('CutLER/maskcut/')
sys.path.append('CutLER/')
import dino
from colormap import random_color
from crf import densecrf
from maskcut import maskcut
from third_party.TokenCut.unsupervised_saliency_detection import metric
def vis_mask(input, mask, mask_color):
fg = mask > 0.5
rgb = np.copy(input)
rgb[fg] = (rgb[fg] * 0.3 + np.array(mask_color) * 0.7).astype(np.uint8)
return Image.fromarray(rgb)
class Model:
def __init__(self):
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.backbone = self.load_backbone()
def load_backbone(self):
# DINO hyperparameters
vit_arch = 'base'
vit_feat = 'k'
patch_size = 8
# DINO pre-trained model
url = 'https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth'
feat_dim = 768
# extract patch features with a pretrained DINO model
backbone = dino.ViTFeat(url, feat_dim, vit_arch, vit_feat, patch_size)
backbone.eval()
backbone.to(self.device)
return backbone
def __call__(self, img_path, tau, n, fixed_size=480):
# get pseudo-masks with MaskCut
bipartitions, _, I_new = maskcut(img_path,
self.backbone,
self.backbone.patch_size,
tau,
N=n,
fixed_size=fixed_size,
cpu=self.device.type == 'cpu')
I = Image.open(img_path).convert('RGB')
width, height = I.size
pseudo_mask_list = []
for idx, bipartition in enumerate(bipartitions):
# post-process pseudo-masks with CRF
pseudo_mask = densecrf(np.array(I_new), bipartition)
pseudo_mask = ndimage.binary_fill_holes(pseudo_mask >= 0.5)
# filter out the mask that have a very different pseudo-mask after the CRF
mask1 = torch.from_numpy(bipartition).to(self.device)
mask2 = torch.from_numpy(pseudo_mask).to(self.device)
if metric.IoU(mask1, mask2) < 0.5:
pseudo_mask = pseudo_mask * -1
# construct binary pseudo-masks
pseudo_mask[pseudo_mask < 0] = 0
pseudo_mask = Image.fromarray(np.uint8(pseudo_mask * 255))
pseudo_mask = np.asarray(pseudo_mask.resize((width, height)))
pseudo_mask = pseudo_mask.astype(np.uint8)
upper = np.max(pseudo_mask)
lower = np.min(pseudo_mask)
thresh = upper / 2.0
pseudo_mask[pseudo_mask > thresh] = upper
pseudo_mask[pseudo_mask <= thresh] = lower
pseudo_mask_list.append(pseudo_mask)
return pseudo_mask_list