Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from torch.optim import Optimizer | |
from torch.optim.lr_scheduler import _LRScheduler | |
class PolynomialDecayLRScheduler(_LRScheduler): | |
"""Polynomial decay LR scheduler. | |
Args: | |
optimizer (Optimizer): Torch optimizer. | |
warmup_steps (int): Number of warmup steps. | |
total_steps (int): Total number of steps. | |
end_lr (float): Final learning rate to achieve over total number of steps. | |
zero_lr_warmup_steps (int): Number of steps with a learning rate of value 0. | |
power (float): Decay exponent. | |
""" | |
def __init__(self, optimizer: Optimizer, warmup_steps: int, total_steps: int, | |
end_lr: float = 0., zero_lr_warmup_steps: int = 0, power: float = 1.): | |
self.warmup_steps = warmup_steps | |
self.total_steps = total_steps | |
self.end_lr = end_lr | |
self.zero_lr_warmup_steps = zero_lr_warmup_steps | |
self.power = power | |
super().__init__(optimizer) | |
def _get_sched_lr(self, lr: float, step: int): | |
if self.zero_lr_warmup_steps > 0 and step <= self.zero_lr_warmup_steps: | |
lr = 0 | |
elif self.warmup_steps > 0 and step <= self.warmup_steps + self.zero_lr_warmup_steps: | |
lr_ratio = (step - self.zero_lr_warmup_steps) / float(self.warmup_steps) | |
lr = lr_ratio * lr | |
elif step >= self.total_steps: | |
lr = self.end_lr | |
else: | |
total_warmup_steps = self.warmup_steps + self.zero_lr_warmup_steps | |
lr_range = lr - self.end_lr | |
pct_remaining = 1 - (step - total_warmup_steps) / (self.total_steps - total_warmup_steps) | |
lr = lr_range * pct_remaining ** self.power + self.end_lr | |
return lr | |
def get_lr(self): | |
return [self._get_sched_lr(base_lr, self.last_epoch) for base_lr in self.base_lrs] | |