Spaces:
Build error
Build error
File size: 15,970 Bytes
94ada0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from math import dist
import sys
import os
import click
import re
import json
import glob
import tempfile
import torch
import dnnlib
import hydra
from datetime import date
from training import training_loop
from metrics import metric_main
from torch_utils import training_stats, custom_ops, distributed_utils
from torch_utils.distributed_utils import get_init_file, get_shared_folder
from omegaconf import DictConfig, OmegaConf
#----------------------------------------------------------------------------
class UserError(Exception):
pass
#----------------------------------------------------------------------------
def setup_training_loop_kwargs(cfg):
args = OmegaConf.create({})
# ------------------------------------------
# General options: gpus, snap, metrics, seed
# ------------------------------------------
args.rank = 0
args.gpu = 0
args.num_gpus = torch.cuda.device_count() if cfg.gpus is None else cfg.gpus
args.nodes = cfg.nodes if cfg.nodes is not None else 1
args.world_size = 1
args.dist_url = 'env://'
args.launcher = cfg.launcher
args.partition = cfg.partition
args.comment = cfg.comment
args.timeout = 4320 if cfg.timeout is None else cfg.timeout
args.job_dir = ''
if cfg.snap is None:
cfg.snap = 50
assert isinstance(cfg.snap, int)
if cfg.snap < 1:
raise UserError('snap must be at least 1')
args.image_snapshot_ticks = cfg.imgsnap
args.network_snapshot_ticks = cfg.snap
if hasattr(cfg, 'ucp'):
args.update_cam_prior_ticks = cfg.ucp
if cfg.metrics is None:
cfg.metrics = ['fid50k_full']
cfg.metrics = list(cfg.metrics)
if not all(metric_main.is_valid_metric(metric) for metric in cfg.metrics):
raise UserError('\n'.join(['metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
args.metrics = cfg.metrics
if cfg.seed is None:
cfg.seed = 0
assert isinstance(cfg.seed, int)
args.random_seed = cfg.seed
# -----------------------------------
# Dataset: data, cond, subset, mirror
# -----------------------------------
assert cfg.data is not None
assert isinstance(cfg.data, str)
args.update({"training_set_kwargs": dict(class_name='training.dataset.ImageFolderDataset', path=cfg.data, resolution=cfg.resolution, use_labels=True, max_size=None, xflip=False)})
args.update({"data_loader_kwargs": dict(pin_memory=True, num_workers=3, prefetch_factor=2)})
args.generation_with_image = getattr(cfg, 'generate_with_image', False)
try:
training_set = dnnlib.util.construct_class_by_name(**args.training_set_kwargs) # subclass of training.dataset.Dataset
args.training_set_kwargs.resolution = training_set.resolution # be explicit about resolution
args.training_set_kwargs.use_labels = training_set.has_labels # be explicit about labels
args.training_set_kwargs.max_size = len(training_set) # be explicit about dataset size
desc = training_set.name
del training_set # conserve memory
except IOError as err:
raise UserError(f'data: {err}')
if cfg.cond is None:
cfg.cond = False
assert isinstance(cfg.cond, bool)
if cfg.cond:
if not args.training_set_kwargs.use_labels:
raise UserError('cond=True requires labels specified in dataset.json')
desc += '-cond'
else:
args.training_set_kwargs.use_labels = False
if cfg.subset is not None:
assert isinstance(cfg.subset, int)
if not 1 <= cfg.subset <= args.training_set_kwargs.max_size:
raise UserError(f'subset must be between 1 and {args.training_set_kwargs.max_size}')
desc += f'-subset{cfg.subset}'
if cfg.subset < args.training_set_kwargs.max_size:
args.training_set_kwargs.max_size = cfg.subset
args.training_set_kwargs.random_seed = args.random_seed
if cfg.mirror is None:
cfg.mirror = False
assert isinstance(cfg.mirror, bool)
if cfg.mirror:
desc += '-mirror'
args.training_set_kwargs.xflip = True
# ------------------------------------
# Base config: cfg, model, gamma, kimg, batch
# ------------------------------------
if cfg.auto:
cfg.spec.name = 'auto'
desc += f'-{cfg.spec.name}'
desc += f'-{cfg.model.name}'
if cfg.spec.name == 'auto':
res = args.training_set_kwargs.resolution
cfg.spec.fmaps = 1 if res >= 512 else 0.5
cfg.spec.lrate = 0.002 if res >= 1024 else 0.0025
cfg.spec.gamma = 0.0002 * (res ** 2) / cfg.spec.mb # heuristic formula
cfg.spec.ema = cfg.spec.mb * 10 / 32
if getattr(cfg.spec, 'lrate_disc', None) is None:
cfg.spec.lrate_disc = cfg.spec.lrate # use the same learning rate for discriminator
# model (generator, discriminator)
args.update({"G_kwargs": dict(**cfg.model.G_kwargs)})
args.update({"D_kwargs": dict(**cfg.model.D_kwargs)})
args.update({"G_opt_kwargs": dict(class_name='torch.optim.Adam', lr=cfg.spec.lrate, betas=[0,0.99], eps=1e-8)})
args.update({"D_opt_kwargs": dict(class_name='torch.optim.Adam', lr=cfg.spec.lrate_disc, betas=[0,0.99], eps=1e-8)})
args.update({"loss_kwargs": dict(class_name='training.loss.StyleGAN2Loss', r1_gamma=cfg.spec.gamma, **cfg.model.loss_kwargs)})
if cfg.spec.name == 'cifar':
args.loss_kwargs.pl_weight = 0 # disable path length regularization
args.loss_kwargs.style_mixing_prob = 0 # disable style mixing
args.D_kwargs.architecture = 'orig' # disable residual skip connections
# kimg data config
args.spec = cfg.spec # just keep the dict.
args.total_kimg = cfg.spec.kimg
args.batch_size = cfg.spec.mb
args.batch_gpu = cfg.spec.mbstd
args.ema_kimg = cfg.spec.ema
args.ema_rampup = cfg.spec.ramp
# ---------------------------------------------------
# Discriminator augmentation: aug, p, target, augpipe
# ---------------------------------------------------
if cfg.aug is None:
cfg.aug = 'ada'
else:
assert isinstance(cfg.aug, str)
desc += f'-{cfg.aug}'
if cfg.aug == 'ada':
args.ada_target = 0.6
elif cfg.aug == 'noaug':
pass
elif cfg.aug == 'fixed':
if cfg.p is None:
raise UserError(f'--aug={cfg.aug} requires specifying --p')
else:
raise UserError(f'--aug={cfg.aug} not supported')
if cfg.p is not None:
assert isinstance(cfg.p, float)
if cfg.aug != 'fixed':
raise UserError('--p can only be specified with --aug=fixed')
if not 0 <= cfg.p <= 1:
raise UserError('--p must be between 0 and 1')
desc += f'-p{cfg.p:g}'
args.augment_p = cfg.p
if cfg.target is not None:
assert isinstance(cfg.target, float)
if cfg.aug != 'ada':
raise UserError('--target can only be specified with --aug=ada')
if not 0 <= cfg.target <= 1:
raise UserError('--target must be between 0 and 1')
desc += f'-target{cfg.target:g}'
args.ada_target = cfg.target
assert cfg.augpipe is None or isinstance(cfg.augpipe, str)
if cfg.augpipe is None:
cfg.augpipe = 'bgc'
else:
if cfg.aug == 'noaug':
raise UserError('--augpipe cannot be specified with --aug=noaug')
desc += f'-{cfg.augpipe}'
augpipe_specs = {
'blit': dict(xflip=1, rotate90=1, xint=1),
'geom': dict(scale=1, rotate=1, aniso=1, xfrac=1),
'color': dict(brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'filter': dict(imgfilter=1),
'noise': dict(noise=1),
'cutout': dict(cutout=1),
'bgc0': dict(xint=1, scale=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'bg': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1),
'bgc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'bgcf': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1),
'bgcfn': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1),
'bgcfnc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1, cutout=1),
}
assert cfg.augpipe in augpipe_specs
if cfg.aug != 'noaug':
args.update({"augment_kwargs": dict(class_name='training.augment.AugmentPipe', **augpipe_specs[cfg.augpipe])})
# ----------------------------------
# Transfer learning: resume, freezed
# ----------------------------------
resume_specs = {
'ffhq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res256-mirror-paper256-noaug.pkl',
'ffhq512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res512-mirror-stylegan2-noaug.pkl',
'ffhq1024': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res1024-mirror-stylegan2-noaug.pkl',
'celebahq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/celebahq-res256-mirror-paper256-kimg100000-ada-target0.5.pkl',
'lsundog256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/lsundog-res256-paper256-kimg100000-noaug.pkl',
}
assert cfg.resume is None or isinstance(cfg.resume, str)
if cfg.resume is None:
cfg.resume = 'noresume'
elif cfg.resume == 'noresume':
desc += '-noresume'
elif cfg.resume in resume_specs:
desc += f'-resume{cfg.resume}'
args.resume_pkl = resume_specs[cfg.resume] # predefined url
else:
desc += '-resumecustom'
args.resume_pkl = cfg.resume # custom path or url
if cfg.resume != 'noresume':
args.ada_kimg = 100 # make ADA react faster at the beginning
args.ema_rampup = None # disable EMA rampup
if cfg.freezed is not None:
assert isinstance(cfg.freezed, int)
if not cfg.freezed >= 0:
raise UserError('--freezed must be non-negative')
desc += f'-freezed{cfg.freezed:d}'
args.D_kwargs.block_kwargs.freeze_layers = cfg.freezed
# -------------------------------------------------
# Performance options: fp32, nhwc, nobench, workers
# -------------------------------------------------
args.num_fp16_res = cfg.num_fp16_res
if cfg.fp32 is None:
cfg.fp32 = False
assert isinstance(cfg.fp32, bool)
if cfg.fp32:
args.G_kwargs.synthesis_kwargs.num_fp16_res = args.D_kwargs.num_fp16_res = 0
args.G_kwargs.synthesis_kwargs.conv_clamp = args.D_kwargs.conv_clamp = None
if cfg.nhwc is None:
cfg.nhwc = False
assert isinstance(cfg.nhwc, bool)
if cfg.nhwc:
args.G_kwargs.synthesis_kwargs.fp16_channels_last = args.D_kwargs.block_kwargs.fp16_channels_last = True
if cfg.nobench is None:
cfg.nobench = False
assert isinstance(cfg.nobench, bool)
if cfg.nobench:
args.cudnn_benchmark = False
if cfg.allow_tf32 is None:
cfg.allow_tf32 = False
assert isinstance(cfg.allow_tf32, bool)
args.allow_tf32 = cfg.allow_tf32
if cfg.workers is not None:
assert isinstance(cfg.workers, int)
if not cfg.workers >= 1:
raise UserError('--workers must be at least 1')
args.data_loader_kwargs.num_workers = cfg.workers
args.debug = cfg.debug
if getattr(cfg, "prefix", None) is not None:
desc = cfg.prefix + '-' + desc
return desc, args
#----------------------------------------------------------------------------
def subprocess_fn(rank, args):
if not args.debug:
dnnlib.util.Logger(file_name=os.path.join(args.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Init torch.distributed.
distributed_utils.init_distributed_mode(rank, args)
if args.rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(**args)
#----------------------------------------------------------------------------
class CommaSeparatedList(click.ParamType):
name = 'list'
def convert(self, value, param, ctx):
_ = param, ctx
if value is None or value.lower() == 'none' or value == '':
return []
return value.split(',')
@hydra.main(config_path="conf", config_name="config")
def main(cfg: DictConfig):
outdir = cfg.outdir
# Setup training options
run_desc, args = setup_training_loop_kwargs(cfg)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
if cfg.resume_run is None:
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
else:
cur_run_id = cfg.resume_run
args.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{run_desc}')
print(outdir, args.run_dir)
if cfg.resume_run is not None:
pkls = sorted(glob.glob(args.run_dir + '/network*.pkl'))
if len(pkls) > 0:
args.resume_pkl = pkls[-1]
args.resume_start = int(args.resume_pkl.split('-')[-1][:-4]) * 1000
else:
args.resume_start = 0
# Print options.
print()
print('Training options:')
print(OmegaConf.to_yaml(args))
print()
print(f'Output directory: {args.run_dir}')
print(f'Training data: {args.training_set_kwargs.path}')
print(f'Training duration: {args.total_kimg} kimg')
print(f'Number of images: {args.training_set_kwargs.max_size}')
print(f'Image resolution: {args.training_set_kwargs.resolution}')
print(f'Conditional model: {args.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {args.training_set_kwargs.xflip}')
print()
# Dry run?
if cfg.dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
if not os.path.exists(args.run_dir):
os.makedirs(args.run_dir)
with open(os.path.join(args.run_dir, 'training_options.yaml'), 'wt') as fp:
OmegaConf.save(config=args, f=fp.name)
# Launch processes.
print('Launching processes...')
if (args.launcher == 'spawn') and (args.num_gpus > 1):
args.dist_url = distributed_utils.get_init_file().as_uri()
torch.multiprocessing.set_start_method('spawn')
torch.multiprocessing.spawn(fn=subprocess_fn, args=(args,), nprocs=args.num_gpus)
else:
subprocess_fn(rank=0, args=args)
#----------------------------------------------------------------------------
if __name__ == "__main__":
if os.getenv('SLURM_ARGS') is not None:
# deparcated launcher for slurm jobs.
slurm_arg = eval(os.getenv('SLURM_ARGS'))
all_args = sys.argv[1:]
print(slurm_arg)
print(all_args)
from launcher import launch
launch(slurm_arg, all_args)
else:
main() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------
|