File size: 14,781 Bytes
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Copyright (c) Facebook, Inc. and its affiliates.All Rights Reserved


// Please refer to original code: https://github.com/NVlabs/instant-ngp
// and the pytorch wrapper from https://github.com/ashawkey/torch-ngp

#include <stdint.h>
#include <cuda.h>
#include <cuda_runtime.h>

#include <algorithm>
#include <stdexcept>

#include <cstdio>

template <typename T>
__host__ __device__ T div_round_up(T val, T divisor) {
	return (val + divisor - 1) / divisor;
}


template <uint32_t D>
__device__ uint32_t fast_hash(const uint32_t pos_grid[D]) {
	static_assert(D <= 7, "fast_hash can only hash up to 7 dimensions.");

	// While 1 is technically not a good prime for hashing (or a prime at all), it helps memory coherence
	// and is sufficient for our use case of obtaining a uniformly colliding index from high-dimensional
	// coordinates.
	constexpr uint32_t primes[7] = { 1, 19349663, 83492791, 25165843, 6291469, 12582917, 3145739 };

	uint32_t result = 0;
	#pragma unroll
	for (uint32_t i = 0; i < D; ++i) {
		result ^= pos_grid[i] * primes[i];
	}

	return result;
}


template <uint32_t D, uint32_t C>
__device__ uint32_t get_grid_index(const uint32_t ch, const uint32_t hashmap_size, const uint32_t resolution, const uint32_t pos_grid[D], const uint32_t mode) {
	uint32_t stride = 1;
	uint32_t index = 0;
	
    switch(mode) {
        case 0:   // fast-hash
            #pragma unroll
            for (uint32_t d = 0; d < D && stride <= hashmap_size; d++) {
                // printf("get_grid_index d=%d, pos_grid[d]=%d, stride=%d, reso=%d\n", d, pos_grid[d], stride, resolution);
                index += pos_grid[d] * stride;
                stride *= (resolution + 1);
            }
            if (stride > hashmap_size) {
                //printf("hash because %d > %d\n", stride, hashmap_size);
                index = fast_hash<D>(pos_grid);
                //printf("hashed (%d, %d) = %d to %d in %d\n", pos_grid[0], pos_grid[1], pos_grid[0] + resolution * pos_grid[1], index % hashmap_size, hashmap_size);
            }
            index = index % hashmap_size; break;
        
        case 1:   // grid-hash
            uint32_t h_res = (uint32_t)cbrtf(hashmap_size);
            #pragma unroll
            for (uint32_t d = 0; d < D; d++) {
                index += (pos_grid[d] % h_res) * stride;
                stride *= h_res;
            }
            break;
    }
	return index * C + ch;
}


template <uint32_t D, uint32_t C>
__global__ void kernel_grid(
    const float * __restrict__ inputs, 
    const float * __restrict__ grid, 
    const int * __restrict__ offsets, 
    float * outputs, 
    const float beta,
    uint32_t B, uint32_t N, 
    uint32_t L, uint32_t H,
    const bool calc_grad_inputs, 
    float * dy_dx,
    uint32_t mode) {
    
    const uint32_t b = blockIdx.x * blockDim.x + threadIdx.x;
    
    if (b >= N) return;

    const uint32_t level    = blockIdx.y;
    const uint32_t batch_id = blockIdx.z;
    const uint32_t batch_offset_grid   = offsets[L] * batch_id;
    const uint32_t batch_offset_inputs = N * batch_id;

    // locate
    grid    += ((uint32_t)offsets[level] + batch_offset_grid) * C;
    inputs  += ( b + batch_offset_inputs) * D;
    outputs += ((b + batch_offset_inputs) * L + level) * C;

    const uint32_t hashmap_size = offsets[level + 1] - offsets[level];
    
    // const float scale = exp2f(level) * H - 1.0f;
    const float scale = powf(beta, level) * H - 1.0f;
    const uint32_t resolution = (uint32_t)ceil(scale) + 1;
    // const float scale = powf(beta, level) * H;
    // const uint32_t resolution = (uint32_t)ceil(scale);

    // calculate coordinate
    float pos[D];
    uint32_t pos_grid[D];

    #pragma unroll
    for (uint32_t d = 0; d < D; d++) {
        pos[d] = inputs[d] * scale + 0.5f;
        pos_grid[d] = floorf(pos[d]);
        pos[d] -= (float)pos_grid[d];
    }

    // printf("[b=%d, l=%d] pos=(%f, %f)+(%d, %d) scale=%f \n", b, level, pos[0], pos[1], pos_grid[0], pos_grid[1], scale);

    // interpolate
    #pragma unroll
    for (uint32_t idx = 0; idx < (1 << D); idx++) {
        float w = 1;
        uint32_t pos_grid_local[D];

        #pragma unroll
        for (uint32_t d = 0; d < D; d++) {
            if ((idx & (1 << d)) == 0) {
                w *= 1 - pos[d];
                pos_grid_local[d] = pos_grid[d];
            } else {
                w *= pos[d];
                pos_grid_local[d] = pos_grid[d] + 1;
            }
        }

        uint32_t index = get_grid_index<D, C>(0, hashmap_size, resolution, pos_grid_local, mode);

        #pragma unroll
        for (uint32_t ch = 0; ch < C; ch++) {
            outputs[ch] += w * grid[index + ch];
        }

        //printf("[b=%d, l=%d] int %d, idx %d, w %f, val %f\n", b, level, idx, index, w, grid[index]);
    }    

    // prepare dy_dx for calc_grad_inputs
    if (calc_grad_inputs) {

        // dy_dx += b * D * L * C + level * D * C; // B N L D C
        dy_dx += ((b + batch_offset_inputs) * L + level) * D * C;

        #pragma unroll
        for (uint32_t gd = 0; gd < D; gd++) {

            #pragma unroll
            for (uint32_t idx = 0; idx < (1 << (D - 1)); idx++) {
                float w = scale;
                uint32_t pos_grid_local[D];

                #pragma unroll
                for (uint32_t nd = 0; nd < D - 1; nd++) {
                    const uint32_t d = nd > gd ? nd + 1 : nd;

                    if ((idx & (1 << nd)) == 0) {
                        w *= 1 - pos[d];
                        pos_grid_local[d] = pos_grid[d];
                    } else {
                        w *= pos[d];
                        pos_grid_local[d] = pos_grid[d] + 1;
                    }
                }

                pos_grid_local[gd] = pos_grid[gd];
                uint32_t index_left = get_grid_index<D, C>(0, hashmap_size, resolution, pos_grid_local, mode);
                pos_grid_local[gd] = pos_grid[gd] + 1;
                uint32_t index_right = get_grid_index<D, C>(0, hashmap_size, resolution, pos_grid_local, mode);

                #pragma unroll
                for (uint32_t ch = 0; ch < C; ch++) {
                    dy_dx[gd * C + ch] += w * (grid[index_right + ch] - grid[index_left + ch]);
                }
            }
        }
    }
}


template <uint32_t D, uint32_t C, uint32_t N_C>
__global__ void kernel_grid_backward(
    const float * __restrict__ grad,
    const float * __restrict__ inputs, 
    const float * __restrict__ grid, 
    const int * __restrict__ offsets, 
    float * grad_grid, 
    const float beta,
    uint32_t B, uint32_t N, 
    uint32_t L, uint32_t H,
    uint32_t mode
) {
    const uint32_t b = (blockIdx.x * blockDim.x + threadIdx.x) * N_C / C;
	if (b >= N) return;

    const uint32_t level = blockIdx.y;
    const uint32_t ch = (blockIdx.x * blockDim.x + threadIdx.x) * N_C - b * C;
    const uint32_t batch_id = blockIdx.z;
    const uint32_t batch_offset_grid   = offsets[L] * batch_id;
    const uint32_t batch_offset_inputs = N * batch_id;

    // locate
    grad_grid += ((uint32_t)offsets[level] + batch_offset_grid) * C;
    inputs    += ( b + batch_offset_inputs) * D;
    grad      += ((b + batch_offset_inputs) * L + level) * C + ch;

    const uint32_t hashmap_size = offsets[level + 1] - offsets[level];
    // const float scale = exp2f(level) * H - 1.0f;
    const float scale = powf(beta, level) * H - 1.0f;
    const uint32_t resolution = (uint32_t)ceil(scale) + 1;

    // calculate coordinate
    float pos[D];
    uint32_t pos_grid[D];

    #pragma unroll
    for (uint32_t d = 0; d < D; d++) {
        pos[d] = inputs[d] * scale + 0.5f;
        pos_grid[d] = floorf(pos[d]);
        pos[d] -= (float)pos_grid[d];
    }

    // interpolate
    #pragma unroll
    for (uint32_t idx = 0; idx < (1 << D); idx++) {
        float w = 1;
        uint32_t pos_grid_local[D];

        #pragma unroll
        for (uint32_t d = 0; d < D; d++) {
            if ((idx & (1 << d)) == 0) {
                w *= 1 - pos[d];
                pos_grid_local[d] = pos_grid[d];
            } else {
                w *= pos[d];
                pos_grid_local[d] = pos_grid[d] + 1;
            }
        }
        
        uint32_t index = get_grid_index<D, C>(ch, hashmap_size, resolution, pos_grid_local, mode);

        #pragma unroll
        for (uint32_t c = 0; c < N_C; c++) {
            atomicAdd(&grad_grid[index + c], w * grad[c]);
        }
    }    
}


template <uint32_t D, uint32_t C>
__global__ void kernel_input_backward(
    const float * __restrict__ grad,
    const float * __restrict__ dy_dx,  
    float * grad_inputs,
    uint32_t B, uint32_t N, uint32_t L
) {
    const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x;
    if (t >= N * D) return;

    const uint32_t b = t / D;
    const uint32_t d = t - b * D;
    const uint32_t batch_id = blockIdx.y;
    const uint32_t batch_offset_inputs = N * batch_id;

    grad  += (b + batch_offset_inputs) * L * C;
    dy_dx += (b + batch_offset_inputs) * L * D * C;
    grad_inputs += N * D * batch_id;

    # pragma unroll
    for (int l = 0; l < L; l++) {
        # pragma unroll
        for (int ch = 0; ch < C; ch++) {
            grad_inputs[t] += grad[l * C + ch] * dy_dx[l * D * C + d * C + ch];
        }
    }
}


template <uint32_t D>
void kernel_grid_wrapper(const float *inputs, const float *embeddings, const int *offsets, float *outputs, const float beta, const uint32_t B, const uint32_t N, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, const uint32_t mode) {
    static constexpr uint32_t N_THREAD = 512;
	const dim3 blocks_hashgrid = { div_round_up(N, N_THREAD), L, B};
    switch (C) {
        case 1: kernel_grid<D, 1><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
        case 2: kernel_grid<D, 2><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
        case 4: kernel_grid<D, 4><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
        case 8: kernel_grid<D, 8><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
        case 32: kernel_grid<D, 32><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
        default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, 8, 32"};
    }
}

// inputs: [B, D], float, in [0, 1]
// embeddings: [sO, C], float
// offsets: [L + 1], uint32_t
// outputs: [B, L * C], float
// H: base resolution
void hash_encode_forward_cuda(const float *inputs, const float *embeddings, const int *offsets, float *outputs, const float beta, const uint32_t B, const uint32_t N, const uint32_t D, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, const uint32_t mode) {
    switch (D) {
        case 2: kernel_grid_wrapper<2>(inputs, embeddings, offsets, outputs, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, mode); break;
        case 3: kernel_grid_wrapper<3>(inputs, embeddings, offsets, outputs, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, mode); break;
        default: throw std::runtime_error{"We only support 2D or 3D data for now."};
    }
    
}

template <uint32_t D>
void kernel_grid_backward_wrapper(const float *grad, const float *inputs, const float *embeddings, const int *offsets, float *grad_embeddings, const float beta, const uint32_t B,  const uint32_t N, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, float *grad_inputs, const uint32_t mode) {
    static constexpr uint32_t N_THREAD = 256;
	const uint32_t N_C = std::min(2u, C); // n_features_per_thread
	const dim3 blocks_hashgrid = {div_round_up(N * C / N_C, N_THREAD), L, B};   // batch x sample x level
    const dim3 input_blocks_hashgrid = {div_round_up(N * D, N_THREAD), B, 1};
    switch (C) {
        case 1: 
            kernel_grid_backward<D, 1, 1><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); 
            if (calc_grad_inputs) kernel_input_backward<D, 1><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
            break;
        case 2: 
            kernel_grid_backward<D, 2, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode);
            if (calc_grad_inputs) kernel_input_backward<D, 2><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
            break;
        case 4: 
            kernel_grid_backward<D, 4, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode);
            if (calc_grad_inputs) kernel_input_backward<D, 4><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
            break;
        case 8: 
            kernel_grid_backward<D, 8, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode);
            if (calc_grad_inputs) kernel_input_backward<D, 8><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
            break;
        case 32:
            kernel_grid_backward<D, 32, 4><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode);
            if (calc_grad_inputs) kernel_input_backward<D, 32><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
            break;
        default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."};
    }
}


// grad: [B, L * C], float
// inputs: [B, D], float, in [0, 1]
// embeddings: [sO, C], float
// offsets: [L + 1], uint32_t
// grad_embeddings: [sO, C]
// H: base resolution
void hash_encode_backward_cuda(const float *grad, const float *inputs, const float *embeddings, const int *offsets, float *grad_embeddings, const float beta, const uint32_t B,  const uint32_t N, const uint32_t D, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, float *grad_inputs, const uint32_t mode) {
    switch (D) {
        case 2: kernel_grid_backward_wrapper<2>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, grad_inputs, mode); break;
        case 3: kernel_grid_backward_wrapper<3>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, grad_inputs, mode); break;
        default: throw std::runtime_error{"We only support 2D or 3D data for now."};
    }
}