File size: 16,292 Bytes
94ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import torch
import torch.nn.functional as F
import math
import random
import numpy as np


def positional_encoding(p, size, pe='normal', use_pos=False):
    if pe == 'gauss':
        p_transformed = np.pi * p @ size
        p_transformed = torch.cat(
            [torch.sin(p_transformed), torch.cos(p_transformed)], dim=-1)
    else:
        p_transformed = torch.cat([torch.cat(
            [torch.sin((2 ** i) * np.pi * p),
            torch.cos((2 ** i) * np.pi * p)],
            dim=-1) for i in range(size)], dim=-1)
    if use_pos:
        p_transformed = torch.cat([p_transformed, p], -1)
    return p_transformed


def upsample(img_nerf, size, filter=None):
    up = size // img_nerf.size(-1)
    if up <= 1:
        return img_nerf

    if filter is not None:
        from torch_utils.ops import upfirdn2d
        for _ in range(int(math.log2(up))):
            img_nerf = upfirdn2d.downsample2d(img_nerf, filter, up=2)
    else:
        img_nerf = F.interpolate(img_nerf, (size, size), mode='bilinear', align_corners=False)
    return img_nerf


def downsample(img0, size, filter=None):
    down = img0.size(-1) // size
    if down <= 1:
        return img0

    if filter is not None:    
        from torch_utils.ops import upfirdn2d
        for _ in range(int(math.log2(down))):
            img0 = upfirdn2d.downsample2d(img0, filter, down=2)
    else:
        img0 = F.interpolate(img0, (size, size), mode='bilinear', align_corners=False)
    return img0
        

def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor:
    """
    Normalize vector lengths.
    """
    return vectors / (torch.norm(vectors, dim=-1, keepdim=True))


def repeat_vecs(vecs, n, dim=0):
    return torch.stack(n*[vecs], dim=dim)


def get_grids(H, W, device, align=True):
    ch = 1 if align else 1 - (1 / H)
    cw = 1 if align else 1 - (1 / W)
    x, y = torch.meshgrid(torch.linspace(-cw, cw, W, device=device),
                          torch.linspace(ch, -ch, H, device=device))
    return torch.stack([x, y], -1)


def local_ensemble(pi, po, resolution):
    ii = range(resolution)
    ia = torch.tensor([max((i - 1)//2, 0) for i in ii]).long()
    ib = torch.tensor([min((i + 1)//2, resolution//2-1) for i in ii]).long()
    
    ul = torch.meshgrid(ia, ia)
    ur = torch.meshgrid(ia, ib)
    ll = torch.meshgrid(ib, ia)
    lr = torch.meshgrid(ib, ib)
    
    d_ul, p_ul = po - pi[ul], torch.stack(ul, -1)
    d_ur, p_ur = po - pi[ur], torch.stack(ur, -1)
    d_ll, p_ll = po - pi[ll], torch.stack(ll, -1)
    d_lr, p_lr = po - pi[lr], torch.stack(lr, -1)
    
    c_ul = d_ul.prod(dim=-1).abs()
    c_ur = d_ur.prod(dim=-1).abs()
    c_ll = d_ll.prod(dim=-1).abs()
    c_lr = d_lr.prod(dim=-1).abs()

    D = torch.stack([d_ul, d_ur, d_ll, d_lr], 0)
    P = torch.stack([p_ul, p_ur, p_ll, p_lr], 0)
    C = torch.stack([c_ul, c_ur, c_ll, c_lr], 0)
    C = C / C.sum(dim=0, keepdim=True)
    return D, P, C


def get_initial_rays_trig(num_steps, fov, resolution, ray_start, ray_end, device='cpu'):
    """Returns sample points, z_vals, ray directions in camera space."""

    W, H = resolution
    # Create full screen NDC (-1 to +1) coords [x, y, 0, 1].
    # Y is flipped to follow image memory layouts.
    x, y = torch.meshgrid(torch.linspace(-1, 1, W, device=device),
                          torch.linspace(1, -1, H, device=device))
    x = x.T.flatten()
    y = y.T.flatten()
    z = -torch.ones_like(x, device=device) / math.tan((2 * math.pi * fov / 360)/2)

    rays_d_cam = normalize_vecs(torch.stack([x, y, z], -1))

    z_vals = torch.linspace(ray_start, ray_end, num_steps, device=device).reshape(1, num_steps, 1).repeat(W*H, 1, 1)
    points = rays_d_cam.unsqueeze(1).repeat(1, num_steps, 1) * z_vals
    return points, z_vals, rays_d_cam


def sample_camera_positions(
    device, n=1, r=1, horizontal_stddev=1, vertical_stddev=1, 
    horizontal_mean=math.pi*0.5, vertical_mean=math.pi*0.5, mode='normal'):
    """
    Samples n random locations along a sphere of radius r. 
    Uses a gaussian distribution for pitch and yaw
    """
    if mode == 'uniform':
        theta = (torch.rand((n, 1),device=device) - 0.5) * 2 * horizontal_stddev + horizontal_mean
        phi = (torch.rand((n, 1),device=device) - 0.5) * 2 * vertical_stddev + vertical_mean

    elif mode == 'normal' or mode == 'gaussian':
        theta = torch.randn((n, 1), device=device) * horizontal_stddev + horizontal_mean
        phi = torch.randn((n, 1), device=device) * vertical_stddev + vertical_mean

    elif mode == 'hybrid':
        if random.random() < 0.5:
            theta = (torch.rand((n, 1),device=device) - 0.5) * 2 * horizontal_stddev * 2 + horizontal_mean
            phi = (torch.rand((n, 1),device=device) - 0.5) * 2 * vertical_stddev * 2 + vertical_mean
        else:
            theta = torch.randn((n, 1), device=device) * horizontal_stddev + horizontal_mean
            phi = torch.randn((n, 1), device=device) * vertical_stddev + vertical_mean
    else:
        phi = torch.ones((n, 1), device=device, dtype=torch.float) * vertical_mean
        theta = torch.ones((n, 1), device=device, dtype=torch.float) * horizontal_mean

    phi = torch.clamp(phi, 1e-5, math.pi - 1e-5)

    output_points = torch.zeros((n, 3), device=device)# torch.cuda.FloatTensor(n, 3).fill_(0)#torch.zeros((n, 3))

    output_points[:, 0:1] = r*torch.sin(phi) * torch.cos(theta)
    output_points[:, 2:3] = r*torch.sin(phi) * torch.sin(theta)
    output_points[:, 1:2] = r*torch.cos(phi)

    return output_points, phi, theta


def perturb_points(points, z_vals, ray_directions, device):
    distance_between_points = z_vals[:,:,1:2,:] - z_vals[:,:,0:1,:]
    offset = (torch.rand(z_vals.shape, device=device)-0.5) * distance_between_points
    z_vals = z_vals + offset
    points = points + offset * ray_directions.unsqueeze(2)
    return points, z_vals


def create_cam2world_matrix(forward_vector, origin, device=None):
    """Takes in the direction the camera is pointing and the camera origin and returns a world2cam matrix."""

    forward_vector = normalize_vecs(forward_vector)
    up_vector = torch.tensor([0, 1, 0], dtype=torch.float, device=device).expand_as(forward_vector)
    left_vector = normalize_vecs(torch.cross(up_vector, forward_vector, dim=-1))
    up_vector = normalize_vecs(torch.cross(forward_vector, left_vector, dim=-1))

    rotation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
    rotation_matrix[:, :3, :3] = torch.stack((-left_vector, up_vector, -forward_vector), axis=-1)

    translation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
    translation_matrix[:, :3, 3] = origin

    cam2world = translation_matrix @ rotation_matrix

    return cam2world


def transform_sampled_points(
    points, z_vals, ray_directions, device, 
    h_stddev=1, v_stddev=1, h_mean=math.pi * 0.5, 
    v_mean=math.pi * 0.5, mode='normal'):
    """
    points: batch_size x total_pixels x num_steps x 3
    z_vals: batch_size x total_pixels x num_steps
    """
    n, num_rays, num_steps, channels = points.shape
    points, z_vals = perturb_points(points, z_vals, ray_directions, device)
    camera_origin, pitch, yaw = sample_camera_positions(
        n=points.shape[0], r=1, 
        horizontal_stddev=h_stddev, vertical_stddev=v_stddev, 
        horizontal_mean=h_mean, vertical_mean=v_mean, 
        device=device, mode=mode)
    forward_vector = normalize_vecs(-camera_origin)
    cam2world_matrix = create_cam2world_matrix(forward_vector, camera_origin, device=device)

    points_homogeneous = torch.ones((points.shape[0], points.shape[1], points.shape[2], points.shape[3] + 1), device=device)
    points_homogeneous[:, :, :, :3] = points

    # should be n x 4 x 4 , n x r^2 x num_steps x 4
    transformed_points = torch.bmm(cam2world_matrix, points_homogeneous.reshape(n, -1, 4).permute(0,2,1)).permute(0, 2, 1).reshape(n, num_rays, num_steps, 4)
    transformed_ray_directions = torch.bmm(cam2world_matrix[..., :3, :3], ray_directions.reshape(n, -1, 3).permute(0,2,1)).permute(0, 2, 1).reshape(n, num_rays, 3)

    homogeneous_origins = torch.zeros((n, 4, num_rays), device=device)
    homogeneous_origins[:, 3, :] = 1

    transformed_ray_origins = torch.bmm(cam2world_matrix, homogeneous_origins).permute(0, 2, 1).reshape(n, num_rays, 4)[..., :3]
    return transformed_points[..., :3], z_vals, transformed_ray_directions, transformed_ray_origins, pitch, yaw


def integration(
    rgb_sigma, z_vals, device, noise_std=0.5,
    last_back=False, white_back=False, clamp_mode=None, fill_mode=None):

    rgbs = rgb_sigma[..., :3]
    sigmas = rgb_sigma[..., 3:]

    deltas = z_vals[..., 1:, :] - z_vals[..., :-1, :]
    delta_inf = 1e10 * torch.ones_like(deltas[..., :1, :])
    deltas = torch.cat([deltas, delta_inf], -2)

    if noise_std > 0:
        noise = torch.randn(sigmas.shape, device=device) * noise_std
    else:
        noise = 0

    if clamp_mode == 'softplus':
        alphas = 1 - torch.exp(-deltas * (F.softplus(sigmas + noise)))
    elif clamp_mode == 'relu':
        alphas = 1 - torch.exp(-deltas * (F.relu(sigmas + noise)))
    else:
        raise "Need to choose clamp mode"

    alphas_shifted = torch.cat([torch.ones_like(alphas[..., :1, :]), 1-alphas + 1e-10], -2)
    weights = alphas * torch.cumprod(alphas_shifted, -2)[..., :-1, :]
    weights_sum = weights.sum(-2)

    if last_back:
        weights[..., -1, :] += (1 - weights_sum)

    rgb_final = torch.sum(weights * rgbs, -2)
    depth_final = torch.sum(weights * z_vals, -2)

    if white_back:
        rgb_final = rgb_final + 1-weights_sum

    if fill_mode == 'debug':
        rgb_final[weights_sum.squeeze(-1) < 0.9] = torch.tensor([1., 0, 0], device=rgb_final.device)
    elif fill_mode == 'weight':
        rgb_final = weights_sum.expand_as(rgb_final)

    return rgb_final, depth_final, weights


def get_sigma_field_np(nerf, styles, resolution=512, block_resolution=64):
    # return numpy array of forwarded sigma value
    bound = (nerf.depth_range[1] - nerf.depth_range[0]) * 0.5
    X = torch.linspace(-bound, bound, resolution).split(block_resolution)

    sigma_np = np.zeros([resolution, resolution, resolution], dtype=np.float32)

    for xi, xs in enumerate(X):
        for yi, ys in enumerate(X):
            for zi, zs in enumerate(X):
                xx, yy, zz = torch.meshgrid(xs, ys, zs)
                pts = torch.stack([xx, yy, zz], dim=-1).unsqueeze(0).to(styles.device)  # B, H, H, H, C
                block_shape = [1, len(xs), len(ys), len(zs)]
                feat_out, sigma_out = nerf.fg_nerf.forward_style2(pts, None, block_shape, ws=styles)
                sigma_np[xi * block_resolution: xi * block_resolution + len(xs), \
                yi * block_resolution: yi * block_resolution + len(ys), \
                zi * block_resolution: zi * block_resolution + len(zs)] = sigma_out.reshape(block_shape[1:]).detach().cpu().numpy()

    return sigma_np, bound


def extract_geometry(nerf, styles, resolution, threshold):
    import mcubes

    print('threshold: {}'.format(threshold))
    u, bound = get_sigma_field_np(nerf, styles, resolution)
    vertices, triangles = mcubes.marching_cubes(u, threshold)
    b_min_np = np.array([-bound, -bound, -bound])
    b_max_np = np.array([ bound,  bound,  bound])

    vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
    return vertices.astype('float32'), triangles


def render_mesh(meshes, camera_matrices, render_noise=True):
    from pytorch3d.renderer import (
        FoVPerspectiveCameras, look_at_view_transform,
        RasterizationSettings, BlendParams,
        MeshRenderer, MeshRasterizer, HardPhongShader, TexturesVertex
    )
    from pytorch3d.ops import interpolate_face_attributes
    from pytorch3d.structures.meshes import Meshes

    intrinsics, poses, _, _ = camera_matrices
    device = poses.device
    c2w = torch.matmul(poses, torch.diag(torch.tensor([-1.0, 1.0, -1.0, 1.0], device=device))[None, :, :])  # Different camera model...
    w2c = torch.inverse(c2w)
    R = c2w[:, :3, :3]
    T = w2c[:, :3, 3]   # So weird..... Why one is c2w and another is w2c?
    focal = intrinsics[0, 0, 0]
    fov = torch.arctan(focal) * 2.0 / np.pi * 180
    

    colors = []
    offset = 1
    for res, (mesh, face_vert_noise) in meshes.items():
        raster_settings = RasterizationSettings(
                image_size=res,
                blur_radius=0.0,
                faces_per_pixel=1,
        )
        mesh = Meshes(
            verts=[torch.from_numpy(mesh.vertices).float().to(device)],
            faces=[torch.from_numpy(mesh.faces).long().to(device)])

        _colors = []
        for i in range(len(poses)):
            cameras = FoVPerspectiveCameras(device=device, R=R[i: i+1], T=T[i: i+1], fov=fov)
            rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
            pix_to_face, zbuf, bary_coord, dists = rasterizer(mesh)
            color = interpolate_face_attributes(pix_to_face, bary_coord, face_vert_noise).squeeze()

            # hack
            color[offset:, offset:] = color[:-offset, :-offset]
            _colors += [color]
        color = torch.stack(_colors, 0).permute(0,3,1,2)
        colors += [color]
        offset *= 2
    return colors


def rotate_vects(v, theta):
    theta = theta / math.pi * 2
    theta = theta + (theta < 0).type_as(theta) * 4
    v  = v.reshape(v.size(0), v.size(1) // 4, 4, v.size(2), v.size(3))
    vs = []
    order  = [0,2,3,1]  # Not working
    iorder = [0,3,1,2]  # Not working
    for b in range(len(v)):
        if (theta[b] - 0) < 1e-6:
            u, l = 0, 0
        elif (theta[b] - 1) < 1e-6:
            u, l = 0, 1
        elif (theta[b] - 2) < 1e-6:
            u, l = 0, 2
        elif (theta[b] - 3) < 1e-6:
            u, l = 0, 3
        else:
            u, l = math.modf(theta[b])
        l, r = int(l), int(l + 1) % 4
        vv = v[b, :, order]  # 0 -> 1 -> 3 -> 2
        vl   = torch.cat([vv[:, l:], vv[:, :l]], 1)
        if u > 0:
            vr = torch.cat([vv[:, r:], vv[:, :r]], 1)
            vv = vl * (1-u) + vr * u
        else:
            vv = vl
        vs.append(vv[:, iorder])
    v = torch.stack(vs, 0)
    v = v.reshape(v.size(0), -1, v.size(-2), v.size(-1))
    return v


def generate_option_outputs(render_option):
    # output debugging outputs (not used in normal rendering process)
    if ('depth' in render_option.split(',')):    
        img = camera_world[:, :1] + fg_depth_map * ray_vector
        img = reformat(img, tgt_res)

        if 'gradient' in render_option.split(','):
            points = (camera_world[:,:,None]+di[:,:,:,None]*ray_vector[:,:,None]).reshape(
                batch_size, tgt_res, tgt_res, di.size(-1), 3)
            with torch.enable_grad():
                gradients = self.fg_nerf.forward_style2(
                    points, None, [batch_size, tgt_res, di.size(-1), tgt_res], get_normal=True,
                    ws=styles, z_shape=z_shape_obj, z_app=z_app_obj).reshape(
                        batch_size, di.size(-1), 3, tgt_res * tgt_res).permute(0,3,1,2)
                avg_grads = (gradients * fg_weights.unsqueeze(-1)).sum(-2)
            normal = reformat(normalize(avg_grads, axis=2)[0], tgt_res)
            img = normal

        if 'value' in render_option.split(','):
            fg_feat = fg_feat[:,:,3:].norm(dim=-1,keepdim=True)
            img = reformat(fg_feat.repeat(1,1,3), tgt_res) / fg_feat.max() * 2 - 1
            
        if 'opacity' in render_option.split(','):
            opacity = bg_lambda.unsqueeze(-1).repeat(1,1,3) * 2 - 1
            img = reformat(opacity, tgt_res)

        if 'normal' in render_option.split(','):
            shift_l, shift_r = img[:,:,2:,:], img[:,:,:-2,:]
            shift_u, shift_d = img[:,:,:,2:], img[:,:,:,:-2]
            diff_hor = normalize(shift_r - shift_l, axis=1)[0][:, :, :, 1:-1]
            diff_ver = normalize(shift_u - shift_d, axis=1)[0][:, :, 1:-1, :]
            normal = torch.cross(diff_hor, diff_ver, dim=1)
            img = normalize(normal, axis=1)[0]
        
        return {'full_out': (None, img), 'reg_loss': {}}