Spaces:
Build error
Build error
File size: 16,292 Bytes
94ada0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
import torch.nn.functional as F
import math
import random
import numpy as np
def positional_encoding(p, size, pe='normal', use_pos=False):
if pe == 'gauss':
p_transformed = np.pi * p @ size
p_transformed = torch.cat(
[torch.sin(p_transformed), torch.cos(p_transformed)], dim=-1)
else:
p_transformed = torch.cat([torch.cat(
[torch.sin((2 ** i) * np.pi * p),
torch.cos((2 ** i) * np.pi * p)],
dim=-1) for i in range(size)], dim=-1)
if use_pos:
p_transformed = torch.cat([p_transformed, p], -1)
return p_transformed
def upsample(img_nerf, size, filter=None):
up = size // img_nerf.size(-1)
if up <= 1:
return img_nerf
if filter is not None:
from torch_utils.ops import upfirdn2d
for _ in range(int(math.log2(up))):
img_nerf = upfirdn2d.downsample2d(img_nerf, filter, up=2)
else:
img_nerf = F.interpolate(img_nerf, (size, size), mode='bilinear', align_corners=False)
return img_nerf
def downsample(img0, size, filter=None):
down = img0.size(-1) // size
if down <= 1:
return img0
if filter is not None:
from torch_utils.ops import upfirdn2d
for _ in range(int(math.log2(down))):
img0 = upfirdn2d.downsample2d(img0, filter, down=2)
else:
img0 = F.interpolate(img0, (size, size), mode='bilinear', align_corners=False)
return img0
def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor:
"""
Normalize vector lengths.
"""
return vectors / (torch.norm(vectors, dim=-1, keepdim=True))
def repeat_vecs(vecs, n, dim=0):
return torch.stack(n*[vecs], dim=dim)
def get_grids(H, W, device, align=True):
ch = 1 if align else 1 - (1 / H)
cw = 1 if align else 1 - (1 / W)
x, y = torch.meshgrid(torch.linspace(-cw, cw, W, device=device),
torch.linspace(ch, -ch, H, device=device))
return torch.stack([x, y], -1)
def local_ensemble(pi, po, resolution):
ii = range(resolution)
ia = torch.tensor([max((i - 1)//2, 0) for i in ii]).long()
ib = torch.tensor([min((i + 1)//2, resolution//2-1) for i in ii]).long()
ul = torch.meshgrid(ia, ia)
ur = torch.meshgrid(ia, ib)
ll = torch.meshgrid(ib, ia)
lr = torch.meshgrid(ib, ib)
d_ul, p_ul = po - pi[ul], torch.stack(ul, -1)
d_ur, p_ur = po - pi[ur], torch.stack(ur, -1)
d_ll, p_ll = po - pi[ll], torch.stack(ll, -1)
d_lr, p_lr = po - pi[lr], torch.stack(lr, -1)
c_ul = d_ul.prod(dim=-1).abs()
c_ur = d_ur.prod(dim=-1).abs()
c_ll = d_ll.prod(dim=-1).abs()
c_lr = d_lr.prod(dim=-1).abs()
D = torch.stack([d_ul, d_ur, d_ll, d_lr], 0)
P = torch.stack([p_ul, p_ur, p_ll, p_lr], 0)
C = torch.stack([c_ul, c_ur, c_ll, c_lr], 0)
C = C / C.sum(dim=0, keepdim=True)
return D, P, C
def get_initial_rays_trig(num_steps, fov, resolution, ray_start, ray_end, device='cpu'):
"""Returns sample points, z_vals, ray directions in camera space."""
W, H = resolution
# Create full screen NDC (-1 to +1) coords [x, y, 0, 1].
# Y is flipped to follow image memory layouts.
x, y = torch.meshgrid(torch.linspace(-1, 1, W, device=device),
torch.linspace(1, -1, H, device=device))
x = x.T.flatten()
y = y.T.flatten()
z = -torch.ones_like(x, device=device) / math.tan((2 * math.pi * fov / 360)/2)
rays_d_cam = normalize_vecs(torch.stack([x, y, z], -1))
z_vals = torch.linspace(ray_start, ray_end, num_steps, device=device).reshape(1, num_steps, 1).repeat(W*H, 1, 1)
points = rays_d_cam.unsqueeze(1).repeat(1, num_steps, 1) * z_vals
return points, z_vals, rays_d_cam
def sample_camera_positions(
device, n=1, r=1, horizontal_stddev=1, vertical_stddev=1,
horizontal_mean=math.pi*0.5, vertical_mean=math.pi*0.5, mode='normal'):
"""
Samples n random locations along a sphere of radius r.
Uses a gaussian distribution for pitch and yaw
"""
if mode == 'uniform':
theta = (torch.rand((n, 1),device=device) - 0.5) * 2 * horizontal_stddev + horizontal_mean
phi = (torch.rand((n, 1),device=device) - 0.5) * 2 * vertical_stddev + vertical_mean
elif mode == 'normal' or mode == 'gaussian':
theta = torch.randn((n, 1), device=device) * horizontal_stddev + horizontal_mean
phi = torch.randn((n, 1), device=device) * vertical_stddev + vertical_mean
elif mode == 'hybrid':
if random.random() < 0.5:
theta = (torch.rand((n, 1),device=device) - 0.5) * 2 * horizontal_stddev * 2 + horizontal_mean
phi = (torch.rand((n, 1),device=device) - 0.5) * 2 * vertical_stddev * 2 + vertical_mean
else:
theta = torch.randn((n, 1), device=device) * horizontal_stddev + horizontal_mean
phi = torch.randn((n, 1), device=device) * vertical_stddev + vertical_mean
else:
phi = torch.ones((n, 1), device=device, dtype=torch.float) * vertical_mean
theta = torch.ones((n, 1), device=device, dtype=torch.float) * horizontal_mean
phi = torch.clamp(phi, 1e-5, math.pi - 1e-5)
output_points = torch.zeros((n, 3), device=device)# torch.cuda.FloatTensor(n, 3).fill_(0)#torch.zeros((n, 3))
output_points[:, 0:1] = r*torch.sin(phi) * torch.cos(theta)
output_points[:, 2:3] = r*torch.sin(phi) * torch.sin(theta)
output_points[:, 1:2] = r*torch.cos(phi)
return output_points, phi, theta
def perturb_points(points, z_vals, ray_directions, device):
distance_between_points = z_vals[:,:,1:2,:] - z_vals[:,:,0:1,:]
offset = (torch.rand(z_vals.shape, device=device)-0.5) * distance_between_points
z_vals = z_vals + offset
points = points + offset * ray_directions.unsqueeze(2)
return points, z_vals
def create_cam2world_matrix(forward_vector, origin, device=None):
"""Takes in the direction the camera is pointing and the camera origin and returns a world2cam matrix."""
forward_vector = normalize_vecs(forward_vector)
up_vector = torch.tensor([0, 1, 0], dtype=torch.float, device=device).expand_as(forward_vector)
left_vector = normalize_vecs(torch.cross(up_vector, forward_vector, dim=-1))
up_vector = normalize_vecs(torch.cross(forward_vector, left_vector, dim=-1))
rotation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
rotation_matrix[:, :3, :3] = torch.stack((-left_vector, up_vector, -forward_vector), axis=-1)
translation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
translation_matrix[:, :3, 3] = origin
cam2world = translation_matrix @ rotation_matrix
return cam2world
def transform_sampled_points(
points, z_vals, ray_directions, device,
h_stddev=1, v_stddev=1, h_mean=math.pi * 0.5,
v_mean=math.pi * 0.5, mode='normal'):
"""
points: batch_size x total_pixels x num_steps x 3
z_vals: batch_size x total_pixels x num_steps
"""
n, num_rays, num_steps, channels = points.shape
points, z_vals = perturb_points(points, z_vals, ray_directions, device)
camera_origin, pitch, yaw = sample_camera_positions(
n=points.shape[0], r=1,
horizontal_stddev=h_stddev, vertical_stddev=v_stddev,
horizontal_mean=h_mean, vertical_mean=v_mean,
device=device, mode=mode)
forward_vector = normalize_vecs(-camera_origin)
cam2world_matrix = create_cam2world_matrix(forward_vector, camera_origin, device=device)
points_homogeneous = torch.ones((points.shape[0], points.shape[1], points.shape[2], points.shape[3] + 1), device=device)
points_homogeneous[:, :, :, :3] = points
# should be n x 4 x 4 , n x r^2 x num_steps x 4
transformed_points = torch.bmm(cam2world_matrix, points_homogeneous.reshape(n, -1, 4).permute(0,2,1)).permute(0, 2, 1).reshape(n, num_rays, num_steps, 4)
transformed_ray_directions = torch.bmm(cam2world_matrix[..., :3, :3], ray_directions.reshape(n, -1, 3).permute(0,2,1)).permute(0, 2, 1).reshape(n, num_rays, 3)
homogeneous_origins = torch.zeros((n, 4, num_rays), device=device)
homogeneous_origins[:, 3, :] = 1
transformed_ray_origins = torch.bmm(cam2world_matrix, homogeneous_origins).permute(0, 2, 1).reshape(n, num_rays, 4)[..., :3]
return transformed_points[..., :3], z_vals, transformed_ray_directions, transformed_ray_origins, pitch, yaw
def integration(
rgb_sigma, z_vals, device, noise_std=0.5,
last_back=False, white_back=False, clamp_mode=None, fill_mode=None):
rgbs = rgb_sigma[..., :3]
sigmas = rgb_sigma[..., 3:]
deltas = z_vals[..., 1:, :] - z_vals[..., :-1, :]
delta_inf = 1e10 * torch.ones_like(deltas[..., :1, :])
deltas = torch.cat([deltas, delta_inf], -2)
if noise_std > 0:
noise = torch.randn(sigmas.shape, device=device) * noise_std
else:
noise = 0
if clamp_mode == 'softplus':
alphas = 1 - torch.exp(-deltas * (F.softplus(sigmas + noise)))
elif clamp_mode == 'relu':
alphas = 1 - torch.exp(-deltas * (F.relu(sigmas + noise)))
else:
raise "Need to choose clamp mode"
alphas_shifted = torch.cat([torch.ones_like(alphas[..., :1, :]), 1-alphas + 1e-10], -2)
weights = alphas * torch.cumprod(alphas_shifted, -2)[..., :-1, :]
weights_sum = weights.sum(-2)
if last_back:
weights[..., -1, :] += (1 - weights_sum)
rgb_final = torch.sum(weights * rgbs, -2)
depth_final = torch.sum(weights * z_vals, -2)
if white_back:
rgb_final = rgb_final + 1-weights_sum
if fill_mode == 'debug':
rgb_final[weights_sum.squeeze(-1) < 0.9] = torch.tensor([1., 0, 0], device=rgb_final.device)
elif fill_mode == 'weight':
rgb_final = weights_sum.expand_as(rgb_final)
return rgb_final, depth_final, weights
def get_sigma_field_np(nerf, styles, resolution=512, block_resolution=64):
# return numpy array of forwarded sigma value
bound = (nerf.depth_range[1] - nerf.depth_range[0]) * 0.5
X = torch.linspace(-bound, bound, resolution).split(block_resolution)
sigma_np = np.zeros([resolution, resolution, resolution], dtype=np.float32)
for xi, xs in enumerate(X):
for yi, ys in enumerate(X):
for zi, zs in enumerate(X):
xx, yy, zz = torch.meshgrid(xs, ys, zs)
pts = torch.stack([xx, yy, zz], dim=-1).unsqueeze(0).to(styles.device) # B, H, H, H, C
block_shape = [1, len(xs), len(ys), len(zs)]
feat_out, sigma_out = nerf.fg_nerf.forward_style2(pts, None, block_shape, ws=styles)
sigma_np[xi * block_resolution: xi * block_resolution + len(xs), \
yi * block_resolution: yi * block_resolution + len(ys), \
zi * block_resolution: zi * block_resolution + len(zs)] = sigma_out.reshape(block_shape[1:]).detach().cpu().numpy()
return sigma_np, bound
def extract_geometry(nerf, styles, resolution, threshold):
import mcubes
print('threshold: {}'.format(threshold))
u, bound = get_sigma_field_np(nerf, styles, resolution)
vertices, triangles = mcubes.marching_cubes(u, threshold)
b_min_np = np.array([-bound, -bound, -bound])
b_max_np = np.array([ bound, bound, bound])
vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
return vertices.astype('float32'), triangles
def render_mesh(meshes, camera_matrices, render_noise=True):
from pytorch3d.renderer import (
FoVPerspectiveCameras, look_at_view_transform,
RasterizationSettings, BlendParams,
MeshRenderer, MeshRasterizer, HardPhongShader, TexturesVertex
)
from pytorch3d.ops import interpolate_face_attributes
from pytorch3d.structures.meshes import Meshes
intrinsics, poses, _, _ = camera_matrices
device = poses.device
c2w = torch.matmul(poses, torch.diag(torch.tensor([-1.0, 1.0, -1.0, 1.0], device=device))[None, :, :]) # Different camera model...
w2c = torch.inverse(c2w)
R = c2w[:, :3, :3]
T = w2c[:, :3, 3] # So weird..... Why one is c2w and another is w2c?
focal = intrinsics[0, 0, 0]
fov = torch.arctan(focal) * 2.0 / np.pi * 180
colors = []
offset = 1
for res, (mesh, face_vert_noise) in meshes.items():
raster_settings = RasterizationSettings(
image_size=res,
blur_radius=0.0,
faces_per_pixel=1,
)
mesh = Meshes(
verts=[torch.from_numpy(mesh.vertices).float().to(device)],
faces=[torch.from_numpy(mesh.faces).long().to(device)])
_colors = []
for i in range(len(poses)):
cameras = FoVPerspectiveCameras(device=device, R=R[i: i+1], T=T[i: i+1], fov=fov)
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
pix_to_face, zbuf, bary_coord, dists = rasterizer(mesh)
color = interpolate_face_attributes(pix_to_face, bary_coord, face_vert_noise).squeeze()
# hack
color[offset:, offset:] = color[:-offset, :-offset]
_colors += [color]
color = torch.stack(_colors, 0).permute(0,3,1,2)
colors += [color]
offset *= 2
return colors
def rotate_vects(v, theta):
theta = theta / math.pi * 2
theta = theta + (theta < 0).type_as(theta) * 4
v = v.reshape(v.size(0), v.size(1) // 4, 4, v.size(2), v.size(3))
vs = []
order = [0,2,3,1] # Not working
iorder = [0,3,1,2] # Not working
for b in range(len(v)):
if (theta[b] - 0) < 1e-6:
u, l = 0, 0
elif (theta[b] - 1) < 1e-6:
u, l = 0, 1
elif (theta[b] - 2) < 1e-6:
u, l = 0, 2
elif (theta[b] - 3) < 1e-6:
u, l = 0, 3
else:
u, l = math.modf(theta[b])
l, r = int(l), int(l + 1) % 4
vv = v[b, :, order] # 0 -> 1 -> 3 -> 2
vl = torch.cat([vv[:, l:], vv[:, :l]], 1)
if u > 0:
vr = torch.cat([vv[:, r:], vv[:, :r]], 1)
vv = vl * (1-u) + vr * u
else:
vv = vl
vs.append(vv[:, iorder])
v = torch.stack(vs, 0)
v = v.reshape(v.size(0), -1, v.size(-2), v.size(-1))
return v
def generate_option_outputs(render_option):
# output debugging outputs (not used in normal rendering process)
if ('depth' in render_option.split(',')):
img = camera_world[:, :1] + fg_depth_map * ray_vector
img = reformat(img, tgt_res)
if 'gradient' in render_option.split(','):
points = (camera_world[:,:,None]+di[:,:,:,None]*ray_vector[:,:,None]).reshape(
batch_size, tgt_res, tgt_res, di.size(-1), 3)
with torch.enable_grad():
gradients = self.fg_nerf.forward_style2(
points, None, [batch_size, tgt_res, di.size(-1), tgt_res], get_normal=True,
ws=styles, z_shape=z_shape_obj, z_app=z_app_obj).reshape(
batch_size, di.size(-1), 3, tgt_res * tgt_res).permute(0,3,1,2)
avg_grads = (gradients * fg_weights.unsqueeze(-1)).sum(-2)
normal = reformat(normalize(avg_grads, axis=2)[0], tgt_res)
img = normal
if 'value' in render_option.split(','):
fg_feat = fg_feat[:,:,3:].norm(dim=-1,keepdim=True)
img = reformat(fg_feat.repeat(1,1,3), tgt_res) / fg_feat.max() * 2 - 1
if 'opacity' in render_option.split(','):
opacity = bg_lambda.unsqueeze(-1).repeat(1,1,3) * 2 - 1
img = reformat(opacity, tgt_res)
if 'normal' in render_option.split(','):
shift_l, shift_r = img[:,:,2:,:], img[:,:,:-2,:]
shift_u, shift_d = img[:,:,:,2:], img[:,:,:,:-2]
diff_hor = normalize(shift_r - shift_l, axis=1)[0][:, :, :, 1:-1]
diff_ver = normalize(shift_u - shift_d, axis=1)[0][:, :, 1:-1, :]
normal = torch.cross(diff_hor, diff_ver, dim=1)
img = normalize(normal, axis=1)[0]
return {'full_out': (None, img), 'reg_loss': {}}
|