Spaces:
Build error
Build error
// Copyright (c) Facebook, Inc. and its affiliates.All Rights Reserved | |
// Please refer to original code: https://github.com/NVlabs/instant-ngp | |
// and the pytorch wrapper from https://github.com/ashawkey/torch-ngp | |
template <typename T> | |
__host__ __device__ T div_round_up(T val, T divisor) { | |
return (val + divisor - 1) / divisor; | |
} | |
template <uint32_t D> | |
__device__ uint32_t fast_hash(const uint32_t pos_grid[D]) { | |
static_assert(D <= 7, "fast_hash can only hash up to 7 dimensions."); | |
// While 1 is technically not a good prime for hashing (or a prime at all), it helps memory coherence | |
// and is sufficient for our use case of obtaining a uniformly colliding index from high-dimensional | |
// coordinates. | |
constexpr uint32_t primes[7] = { 1, 19349663, 83492791, 25165843, 6291469, 12582917, 3145739 }; | |
uint32_t result = 0; | |
for (uint32_t i = 0; i < D; ++i) { | |
result ^= pos_grid[i] * primes[i]; | |
} | |
return result; | |
} | |
template <uint32_t D, uint32_t C> | |
__device__ uint32_t get_grid_index(const uint32_t ch, const uint32_t hashmap_size, const uint32_t resolution, const uint32_t pos_grid[D], const uint32_t mode) { | |
uint32_t stride = 1; | |
uint32_t index = 0; | |
switch(mode) { | |
case 0: // fast-hash | |
for (uint32_t d = 0; d < D && stride <= hashmap_size; d++) { | |
// printf("get_grid_index d=%d, pos_grid[d]=%d, stride=%d, reso=%d\n", d, pos_grid[d], stride, resolution); | |
index += pos_grid[d] * stride; | |
stride *= (resolution + 1); | |
} | |
if (stride > hashmap_size) { | |
//printf("hash because %d > %d\n", stride, hashmap_size); | |
index = fast_hash<D>(pos_grid); | |
//printf("hashed (%d, %d) = %d to %d in %d\n", pos_grid[0], pos_grid[1], pos_grid[0] + resolution * pos_grid[1], index % hashmap_size, hashmap_size); | |
} | |
index = index % hashmap_size; break; | |
case 1: // grid-hash | |
uint32_t h_res = (uint32_t)cbrtf(hashmap_size); | |
for (uint32_t d = 0; d < D; d++) { | |
index += (pos_grid[d] % h_res) * stride; | |
stride *= h_res; | |
} | |
break; | |
} | |
return index * C + ch; | |
} | |
template <uint32_t D, uint32_t C> | |
__global__ void kernel_grid( | |
const float * __restrict__ inputs, | |
const float * __restrict__ grid, | |
const int * __restrict__ offsets, | |
float * outputs, | |
const float beta, | |
uint32_t B, uint32_t N, | |
uint32_t L, uint32_t H, | |
const bool calc_grad_inputs, | |
float * dy_dx, | |
uint32_t mode) { | |
const uint32_t b = blockIdx.x * blockDim.x + threadIdx.x; | |
if (b >= N) return; | |
const uint32_t level = blockIdx.y; | |
const uint32_t batch_id = blockIdx.z; | |
const uint32_t batch_offset_grid = offsets[L] * batch_id; | |
const uint32_t batch_offset_inputs = N * batch_id; | |
// locate | |
grid += ((uint32_t)offsets[level] + batch_offset_grid) * C; | |
inputs += ( b + batch_offset_inputs) * D; | |
outputs += ((b + batch_offset_inputs) * L + level) * C; | |
const uint32_t hashmap_size = offsets[level + 1] - offsets[level]; | |
// const float scale = exp2f(level) * H - 1.0f; | |
const float scale = powf(beta, level) * H - 1.0f; | |
const uint32_t resolution = (uint32_t)ceil(scale) + 1; | |
// const float scale = powf(beta, level) * H; | |
// const uint32_t resolution = (uint32_t)ceil(scale); | |
// calculate coordinate | |
float pos[D]; | |
uint32_t pos_grid[D]; | |
for (uint32_t d = 0; d < D; d++) { | |
pos[d] = inputs[d] * scale + 0.5f; | |
pos_grid[d] = floorf(pos[d]); | |
pos[d] -= (float)pos_grid[d]; | |
} | |
// printf("[b=%d, l=%d] pos=(%f, %f)+(%d, %d) scale=%f \n", b, level, pos[0], pos[1], pos_grid[0], pos_grid[1], scale); | |
// interpolate | |
for (uint32_t idx = 0; idx < (1 << D); idx++) { | |
float w = 1; | |
uint32_t pos_grid_local[D]; | |
for (uint32_t d = 0; d < D; d++) { | |
if ((idx & (1 << d)) == 0) { | |
w *= 1 - pos[d]; | |
pos_grid_local[d] = pos_grid[d]; | |
} else { | |
w *= pos[d]; | |
pos_grid_local[d] = pos_grid[d] + 1; | |
} | |
} | |
uint32_t index = get_grid_index<D, C>(0, hashmap_size, resolution, pos_grid_local, mode); | |
for (uint32_t ch = 0; ch < C; ch++) { | |
outputs[ch] += w * grid[index + ch]; | |
} | |
//printf("[b=%d, l=%d] int %d, idx %d, w %f, val %f\n", b, level, idx, index, w, grid[index]); | |
} | |
// prepare dy_dx for calc_grad_inputs | |
if (calc_grad_inputs) { | |
// dy_dx += b * D * L * C + level * D * C; // B N L D C | |
dy_dx += ((b + batch_offset_inputs) * L + level) * D * C; | |
for (uint32_t gd = 0; gd < D; gd++) { | |
for (uint32_t idx = 0; idx < (1 << (D - 1)); idx++) { | |
float w = scale; | |
uint32_t pos_grid_local[D]; | |
for (uint32_t nd = 0; nd < D - 1; nd++) { | |
const uint32_t d = nd > gd ? nd + 1 : nd; | |
if ((idx & (1 << nd)) == 0) { | |
w *= 1 - pos[d]; | |
pos_grid_local[d] = pos_grid[d]; | |
} else { | |
w *= pos[d]; | |
pos_grid_local[d] = pos_grid[d] + 1; | |
} | |
} | |
pos_grid_local[gd] = pos_grid[gd]; | |
uint32_t index_left = get_grid_index<D, C>(0, hashmap_size, resolution, pos_grid_local, mode); | |
pos_grid_local[gd] = pos_grid[gd] + 1; | |
uint32_t index_right = get_grid_index<D, C>(0, hashmap_size, resolution, pos_grid_local, mode); | |
for (uint32_t ch = 0; ch < C; ch++) { | |
dy_dx[gd * C + ch] += w * (grid[index_right + ch] - grid[index_left + ch]); | |
} | |
} | |
} | |
} | |
} | |
template <uint32_t D, uint32_t C, uint32_t N_C> | |
__global__ void kernel_grid_backward( | |
const float * __restrict__ grad, | |
const float * __restrict__ inputs, | |
const float * __restrict__ grid, | |
const int * __restrict__ offsets, | |
float * grad_grid, | |
const float beta, | |
uint32_t B, uint32_t N, | |
uint32_t L, uint32_t H, | |
uint32_t mode | |
) { | |
const uint32_t b = (blockIdx.x * blockDim.x + threadIdx.x) * N_C / C; | |
if (b >= N) return; | |
const uint32_t level = blockIdx.y; | |
const uint32_t ch = (blockIdx.x * blockDim.x + threadIdx.x) * N_C - b * C; | |
const uint32_t batch_id = blockIdx.z; | |
const uint32_t batch_offset_grid = offsets[L] * batch_id; | |
const uint32_t batch_offset_inputs = N * batch_id; | |
// locate | |
grad_grid += ((uint32_t)offsets[level] + batch_offset_grid) * C; | |
inputs += ( b + batch_offset_inputs) * D; | |
grad += ((b + batch_offset_inputs) * L + level) * C + ch; | |
const uint32_t hashmap_size = offsets[level + 1] - offsets[level]; | |
// const float scale = exp2f(level) * H - 1.0f; | |
const float scale = powf(beta, level) * H - 1.0f; | |
const uint32_t resolution = (uint32_t)ceil(scale) + 1; | |
// calculate coordinate | |
float pos[D]; | |
uint32_t pos_grid[D]; | |
for (uint32_t d = 0; d < D; d++) { | |
pos[d] = inputs[d] * scale + 0.5f; | |
pos_grid[d] = floorf(pos[d]); | |
pos[d] -= (float)pos_grid[d]; | |
} | |
// interpolate | |
for (uint32_t idx = 0; idx < (1 << D); idx++) { | |
float w = 1; | |
uint32_t pos_grid_local[D]; | |
for (uint32_t d = 0; d < D; d++) { | |
if ((idx & (1 << d)) == 0) { | |
w *= 1 - pos[d]; | |
pos_grid_local[d] = pos_grid[d]; | |
} else { | |
w *= pos[d]; | |
pos_grid_local[d] = pos_grid[d] + 1; | |
} | |
} | |
uint32_t index = get_grid_index<D, C>(ch, hashmap_size, resolution, pos_grid_local, mode); | |
for (uint32_t c = 0; c < N_C; c++) { | |
atomicAdd(&grad_grid[index + c], w * grad[c]); | |
} | |
} | |
} | |
template <uint32_t D, uint32_t C> | |
__global__ void kernel_input_backward( | |
const float * __restrict__ grad, | |
const float * __restrict__ dy_dx, | |
float * grad_inputs, | |
uint32_t B, uint32_t N, uint32_t L | |
) { | |
const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x; | |
if (t >= N * D) return; | |
const uint32_t b = t / D; | |
const uint32_t d = t - b * D; | |
const uint32_t batch_id = blockIdx.y; | |
const uint32_t batch_offset_inputs = N * batch_id; | |
grad += (b + batch_offset_inputs) * L * C; | |
dy_dx += (b + batch_offset_inputs) * L * D * C; | |
grad_inputs += N * D * batch_id; | |
for (int l = 0; l < L; l++) { | |
for (int ch = 0; ch < C; ch++) { | |
grad_inputs[t] += grad[l * C + ch] * dy_dx[l * D * C + d * C + ch]; | |
} | |
} | |
} | |
template <uint32_t D> | |
void kernel_grid_wrapper(const float *inputs, const float *embeddings, const int *offsets, float *outputs, const float beta, const uint32_t B, const uint32_t N, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, const uint32_t mode) { | |
static constexpr uint32_t N_THREAD = 512; | |
const dim3 blocks_hashgrid = { div_round_up(N, N_THREAD), L, B}; | |
switch (C) { | |
case 1: kernel_grid<D, 1><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; | |
case 2: kernel_grid<D, 2><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; | |
case 4: kernel_grid<D, 4><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; | |
case 8: kernel_grid<D, 8><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; | |
case 32: kernel_grid<D, 32><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; | |
default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, 8, 32"}; | |
} | |
} | |
// inputs: [B, D], float, in [0, 1] | |
// embeddings: [sO, C], float | |
// offsets: [L + 1], uint32_t | |
// outputs: [B, L * C], float | |
// H: base resolution | |
void hash_encode_forward_cuda(const float *inputs, const float *embeddings, const int *offsets, float *outputs, const float beta, const uint32_t B, const uint32_t N, const uint32_t D, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, const uint32_t mode) { | |
switch (D) { | |
case 2: kernel_grid_wrapper<2>(inputs, embeddings, offsets, outputs, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, mode); break; | |
case 3: kernel_grid_wrapper<3>(inputs, embeddings, offsets, outputs, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, mode); break; | |
default: throw std::runtime_error{"We only support 2D or 3D data for now."}; | |
} | |
} | |
template <uint32_t D> | |
void kernel_grid_backward_wrapper(const float *grad, const float *inputs, const float *embeddings, const int *offsets, float *grad_embeddings, const float beta, const uint32_t B, const uint32_t N, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, float *grad_inputs, const uint32_t mode) { | |
static constexpr uint32_t N_THREAD = 256; | |
const uint32_t N_C = std::min(2u, C); // n_features_per_thread | |
const dim3 blocks_hashgrid = {div_round_up(N * C / N_C, N_THREAD), L, B}; // batch x sample x level | |
const dim3 input_blocks_hashgrid = {div_round_up(N * D, N_THREAD), B, 1}; | |
switch (C) { | |
case 1: | |
kernel_grid_backward<D, 1, 1><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); | |
if (calc_grad_inputs) kernel_input_backward<D, 1><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L); | |
break; | |
case 2: | |
kernel_grid_backward<D, 2, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); | |
if (calc_grad_inputs) kernel_input_backward<D, 2><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L); | |
break; | |
case 4: | |
kernel_grid_backward<D, 4, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); | |
if (calc_grad_inputs) kernel_input_backward<D, 4><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L); | |
break; | |
case 8: | |
kernel_grid_backward<D, 8, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); | |
if (calc_grad_inputs) kernel_input_backward<D, 8><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L); | |
break; | |
case 32: | |
kernel_grid_backward<D, 32, 4><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); | |
if (calc_grad_inputs) kernel_input_backward<D, 32><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L); | |
break; | |
default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."}; | |
} | |
} | |
// grad: [B, L * C], float | |
// inputs: [B, D], float, in [0, 1] | |
// embeddings: [sO, C], float | |
// offsets: [L + 1], uint32_t | |
// grad_embeddings: [sO, C] | |
// H: base resolution | |
void hash_encode_backward_cuda(const float *grad, const float *inputs, const float *embeddings, const int *offsets, float *grad_embeddings, const float beta, const uint32_t B, const uint32_t N, const uint32_t D, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, float *grad_inputs, const uint32_t mode) { | |
switch (D) { | |
case 2: kernel_grid_backward_wrapper<2>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, grad_inputs, mode); break; | |
case 3: kernel_grid_backward_wrapper<3>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, grad_inputs, mode); break; | |
default: throw std::runtime_error{"We only support 2D or 3D data for now."}; | |
} | |
} |