StyleNeRF / torch_utils /ops /hash_sample.cu
Jiatao Gu
add code from the original repo
94ada0b
// Copyright (c) Facebook, Inc. and its affiliates.All Rights Reserved
// Please refer to original code: https://github.com/NVlabs/instant-ngp
// and the pytorch wrapper from https://github.com/ashawkey/torch-ngp
#include <stdint.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <algorithm>
#include <stdexcept>
#include <cstdio>
template <typename T>
__host__ __device__ T div_round_up(T val, T divisor) {
return (val + divisor - 1) / divisor;
}
template <uint32_t D>
__device__ uint32_t fast_hash(const uint32_t pos_grid[D]) {
static_assert(D <= 7, "fast_hash can only hash up to 7 dimensions.");
// While 1 is technically not a good prime for hashing (or a prime at all), it helps memory coherence
// and is sufficient for our use case of obtaining a uniformly colliding index from high-dimensional
// coordinates.
constexpr uint32_t primes[7] = { 1, 19349663, 83492791, 25165843, 6291469, 12582917, 3145739 };
uint32_t result = 0;
#pragma unroll
for (uint32_t i = 0; i < D; ++i) {
result ^= pos_grid[i] * primes[i];
}
return result;
}
template <uint32_t D, uint32_t C>
__device__ uint32_t get_grid_index(const uint32_t ch, const uint32_t hashmap_size, const uint32_t resolution, const uint32_t pos_grid[D], const uint32_t mode) {
uint32_t stride = 1;
uint32_t index = 0;
switch(mode) {
case 0: // fast-hash
#pragma unroll
for (uint32_t d = 0; d < D && stride <= hashmap_size; d++) {
// printf("get_grid_index d=%d, pos_grid[d]=%d, stride=%d, reso=%d\n", d, pos_grid[d], stride, resolution);
index += pos_grid[d] * stride;
stride *= (resolution + 1);
}
if (stride > hashmap_size) {
//printf("hash because %d > %d\n", stride, hashmap_size);
index = fast_hash<D>(pos_grid);
//printf("hashed (%d, %d) = %d to %d in %d\n", pos_grid[0], pos_grid[1], pos_grid[0] + resolution * pos_grid[1], index % hashmap_size, hashmap_size);
}
index = index % hashmap_size; break;
case 1: // grid-hash
uint32_t h_res = (uint32_t)cbrtf(hashmap_size);
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
index += (pos_grid[d] % h_res) * stride;
stride *= h_res;
}
break;
}
return index * C + ch;
}
template <uint32_t D, uint32_t C>
__global__ void kernel_grid(
const float * __restrict__ inputs,
const float * __restrict__ grid,
const int * __restrict__ offsets,
float * outputs,
const float beta,
uint32_t B, uint32_t N,
uint32_t L, uint32_t H,
const bool calc_grad_inputs,
float * dy_dx,
uint32_t mode) {
const uint32_t b = blockIdx.x * blockDim.x + threadIdx.x;
if (b >= N) return;
const uint32_t level = blockIdx.y;
const uint32_t batch_id = blockIdx.z;
const uint32_t batch_offset_grid = offsets[L] * batch_id;
const uint32_t batch_offset_inputs = N * batch_id;
// locate
grid += ((uint32_t)offsets[level] + batch_offset_grid) * C;
inputs += ( b + batch_offset_inputs) * D;
outputs += ((b + batch_offset_inputs) * L + level) * C;
const uint32_t hashmap_size = offsets[level + 1] - offsets[level];
// const float scale = exp2f(level) * H - 1.0f;
const float scale = powf(beta, level) * H - 1.0f;
const uint32_t resolution = (uint32_t)ceil(scale) + 1;
// const float scale = powf(beta, level) * H;
// const uint32_t resolution = (uint32_t)ceil(scale);
// calculate coordinate
float pos[D];
uint32_t pos_grid[D];
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
pos[d] = inputs[d] * scale + 0.5f;
pos_grid[d] = floorf(pos[d]);
pos[d] -= (float)pos_grid[d];
}
// printf("[b=%d, l=%d] pos=(%f, %f)+(%d, %d) scale=%f \n", b, level, pos[0], pos[1], pos_grid[0], pos_grid[1], scale);
// interpolate
#pragma unroll
for (uint32_t idx = 0; idx < (1 << D); idx++) {
float w = 1;
uint32_t pos_grid_local[D];
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
if ((idx & (1 << d)) == 0) {
w *= 1 - pos[d];
pos_grid_local[d] = pos_grid[d];
} else {
w *= pos[d];
pos_grid_local[d] = pos_grid[d] + 1;
}
}
uint32_t index = get_grid_index<D, C>(0, hashmap_size, resolution, pos_grid_local, mode);
#pragma unroll
for (uint32_t ch = 0; ch < C; ch++) {
outputs[ch] += w * grid[index + ch];
}
//printf("[b=%d, l=%d] int %d, idx %d, w %f, val %f\n", b, level, idx, index, w, grid[index]);
}
// prepare dy_dx for calc_grad_inputs
if (calc_grad_inputs) {
// dy_dx += b * D * L * C + level * D * C; // B N L D C
dy_dx += ((b + batch_offset_inputs) * L + level) * D * C;
#pragma unroll
for (uint32_t gd = 0; gd < D; gd++) {
#pragma unroll
for (uint32_t idx = 0; idx < (1 << (D - 1)); idx++) {
float w = scale;
uint32_t pos_grid_local[D];
#pragma unroll
for (uint32_t nd = 0; nd < D - 1; nd++) {
const uint32_t d = nd > gd ? nd + 1 : nd;
if ((idx & (1 << nd)) == 0) {
w *= 1 - pos[d];
pos_grid_local[d] = pos_grid[d];
} else {
w *= pos[d];
pos_grid_local[d] = pos_grid[d] + 1;
}
}
pos_grid_local[gd] = pos_grid[gd];
uint32_t index_left = get_grid_index<D, C>(0, hashmap_size, resolution, pos_grid_local, mode);
pos_grid_local[gd] = pos_grid[gd] + 1;
uint32_t index_right = get_grid_index<D, C>(0, hashmap_size, resolution, pos_grid_local, mode);
#pragma unroll
for (uint32_t ch = 0; ch < C; ch++) {
dy_dx[gd * C + ch] += w * (grid[index_right + ch] - grid[index_left + ch]);
}
}
}
}
}
template <uint32_t D, uint32_t C, uint32_t N_C>
__global__ void kernel_grid_backward(
const float * __restrict__ grad,
const float * __restrict__ inputs,
const float * __restrict__ grid,
const int * __restrict__ offsets,
float * grad_grid,
const float beta,
uint32_t B, uint32_t N,
uint32_t L, uint32_t H,
uint32_t mode
) {
const uint32_t b = (blockIdx.x * blockDim.x + threadIdx.x) * N_C / C;
if (b >= N) return;
const uint32_t level = blockIdx.y;
const uint32_t ch = (blockIdx.x * blockDim.x + threadIdx.x) * N_C - b * C;
const uint32_t batch_id = blockIdx.z;
const uint32_t batch_offset_grid = offsets[L] * batch_id;
const uint32_t batch_offset_inputs = N * batch_id;
// locate
grad_grid += ((uint32_t)offsets[level] + batch_offset_grid) * C;
inputs += ( b + batch_offset_inputs) * D;
grad += ((b + batch_offset_inputs) * L + level) * C + ch;
const uint32_t hashmap_size = offsets[level + 1] - offsets[level];
// const float scale = exp2f(level) * H - 1.0f;
const float scale = powf(beta, level) * H - 1.0f;
const uint32_t resolution = (uint32_t)ceil(scale) + 1;
// calculate coordinate
float pos[D];
uint32_t pos_grid[D];
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
pos[d] = inputs[d] * scale + 0.5f;
pos_grid[d] = floorf(pos[d]);
pos[d] -= (float)pos_grid[d];
}
// interpolate
#pragma unroll
for (uint32_t idx = 0; idx < (1 << D); idx++) {
float w = 1;
uint32_t pos_grid_local[D];
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
if ((idx & (1 << d)) == 0) {
w *= 1 - pos[d];
pos_grid_local[d] = pos_grid[d];
} else {
w *= pos[d];
pos_grid_local[d] = pos_grid[d] + 1;
}
}
uint32_t index = get_grid_index<D, C>(ch, hashmap_size, resolution, pos_grid_local, mode);
#pragma unroll
for (uint32_t c = 0; c < N_C; c++) {
atomicAdd(&grad_grid[index + c], w * grad[c]);
}
}
}
template <uint32_t D, uint32_t C>
__global__ void kernel_input_backward(
const float * __restrict__ grad,
const float * __restrict__ dy_dx,
float * grad_inputs,
uint32_t B, uint32_t N, uint32_t L
) {
const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x;
if (t >= N * D) return;
const uint32_t b = t / D;
const uint32_t d = t - b * D;
const uint32_t batch_id = blockIdx.y;
const uint32_t batch_offset_inputs = N * batch_id;
grad += (b + batch_offset_inputs) * L * C;
dy_dx += (b + batch_offset_inputs) * L * D * C;
grad_inputs += N * D * batch_id;
# pragma unroll
for (int l = 0; l < L; l++) {
# pragma unroll
for (int ch = 0; ch < C; ch++) {
grad_inputs[t] += grad[l * C + ch] * dy_dx[l * D * C + d * C + ch];
}
}
}
template <uint32_t D>
void kernel_grid_wrapper(const float *inputs, const float *embeddings, const int *offsets, float *outputs, const float beta, const uint32_t B, const uint32_t N, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, const uint32_t mode) {
static constexpr uint32_t N_THREAD = 512;
const dim3 blocks_hashgrid = { div_round_up(N, N_THREAD), L, B};
switch (C) {
case 1: kernel_grid<D, 1><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
case 2: kernel_grid<D, 2><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
case 4: kernel_grid<D, 4><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
case 8: kernel_grid<D, 8><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
case 32: kernel_grid<D, 32><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break;
default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, 8, 32"};
}
}
// inputs: [B, D], float, in [0, 1]
// embeddings: [sO, C], float
// offsets: [L + 1], uint32_t
// outputs: [B, L * C], float
// H: base resolution
void hash_encode_forward_cuda(const float *inputs, const float *embeddings, const int *offsets, float *outputs, const float beta, const uint32_t B, const uint32_t N, const uint32_t D, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, const uint32_t mode) {
switch (D) {
case 2: kernel_grid_wrapper<2>(inputs, embeddings, offsets, outputs, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, mode); break;
case 3: kernel_grid_wrapper<3>(inputs, embeddings, offsets, outputs, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, mode); break;
default: throw std::runtime_error{"We only support 2D or 3D data for now."};
}
}
template <uint32_t D>
void kernel_grid_backward_wrapper(const float *grad, const float *inputs, const float *embeddings, const int *offsets, float *grad_embeddings, const float beta, const uint32_t B, const uint32_t N, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, float *grad_inputs, const uint32_t mode) {
static constexpr uint32_t N_THREAD = 256;
const uint32_t N_C = std::min(2u, C); // n_features_per_thread
const dim3 blocks_hashgrid = {div_round_up(N * C / N_C, N_THREAD), L, B}; // batch x sample x level
const dim3 input_blocks_hashgrid = {div_round_up(N * D, N_THREAD), B, 1};
switch (C) {
case 1:
kernel_grid_backward<D, 1, 1><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode);
if (calc_grad_inputs) kernel_input_backward<D, 1><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
break;
case 2:
kernel_grid_backward<D, 2, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode);
if (calc_grad_inputs) kernel_input_backward<D, 2><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
break;
case 4:
kernel_grid_backward<D, 4, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode);
if (calc_grad_inputs) kernel_input_backward<D, 4><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
break;
case 8:
kernel_grid_backward<D, 8, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode);
if (calc_grad_inputs) kernel_input_backward<D, 8><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
break;
case 32:
kernel_grid_backward<D, 32, 4><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode);
if (calc_grad_inputs) kernel_input_backward<D, 32><<<input_blocks_hashgrid, N_THREAD>>>(grad, dy_dx, grad_inputs, B, N, L);
break;
default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."};
}
}
// grad: [B, L * C], float
// inputs: [B, D], float, in [0, 1]
// embeddings: [sO, C], float
// offsets: [L + 1], uint32_t
// grad_embeddings: [sO, C]
// H: base resolution
void hash_encode_backward_cuda(const float *grad, const float *inputs, const float *embeddings, const int *offsets, float *grad_embeddings, const float beta, const uint32_t B, const uint32_t N, const uint32_t D, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, float *grad_inputs, const uint32_t mode) {
switch (D) {
case 2: kernel_grid_backward_wrapper<2>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, grad_inputs, mode); break;
case 3: kernel_grid_backward_wrapper<3>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, grad_inputs, mode); break;
default: throw std::runtime_error{"We only support 2D or 3D data for now."};
}
}