Spaces:
Build error
Build error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
from pickle import NONE | |
from re import X | |
from sndhdr import whathdr | |
import numpy as np | |
import math | |
import scipy.signal | |
import scipy.optimize | |
from numpy import core | |
from numpy.lib.arraysetops import isin | |
import torch | |
import torch.nn.functional as F | |
from torch.overrides import is_tensor_method_or_property | |
from einops import repeat | |
from dnnlib import camera, util, geometry | |
from torch_utils import misc | |
from torch_utils import persistence | |
from torch_utils.ops import conv2d_resample | |
from torch_utils.ops import upfirdn2d | |
from torch_utils.ops import bias_act | |
from torch_utils.ops import fma | |
from torch_utils.ops import filtered_lrelu | |
#---------------------------------------------------------------------------- | |
def normalize_2nd_moment(x, dim=1, eps=1e-8): | |
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() | |
def conv3d(x, w, up=1, down=1, padding=0, groups=1): | |
if up > 1: | |
x = F.interpolate(x, scale_factor=up, mode='trilinear', align_corners=True) | |
x = F.conv3d(x, w, padding=padding, groups=groups) | |
if down > 1: | |
x = F.interpolate(x, scale_factor=1./float(down), mode='trilinear', align_corners=True) | |
return x | |
#---------------------------------------------------------------------------- | |
def modulated_conv2d( | |
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width]. | |
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width]. | |
styles, # Modulation coefficients of shape [batch_size, in_channels]. | |
noise = None, # Optional noise tensor to add to the output activations. | |
up = 1, # Integer upsampling factor. | |
down = 1, # Integer downsampling factor. | |
padding = 0, # Padding with respect to the upsampled image. | |
resample_filter = None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter(). | |
demodulate = True, # Apply weight demodulation? | |
flip_weight = True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d) ???????? | |
fused_modconv = True, # Perform modulation, convolution, and demodulation as a single fused operation? | |
mode = '2d', # modulated 2d/3d conv or MLP | |
**unused, | |
): | |
batch_size = x.shape[0] | |
if mode == '3d': | |
_, in_channels, kd, kh, kw = weight.shape | |
else: | |
_, in_channels, kh, kw = weight.shape | |
# Pre-normalize inputs to avoid FP16 overflow. | |
if x.dtype == torch.float16 and demodulate: | |
weight_sizes = in_channels * kh * kw if mode != '3d' else in_channels * kd * kh * kw | |
weight = weight * (1 / np.sqrt(weight_sizes) / weight.norm(float('inf'), dim=[1,2,3], keepdim=True)) # max_Ikk | |
styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I | |
# Calculate per-sample weights and demodulation coefficients. | |
w = None | |
dcoefs = None | |
if mode != '3d': | |
rsizes, ssizes = [-1, 1, 1], [2, 3, 4] | |
else: | |
rsizes, ssizes = [-1, 1, 1, 1], [2, 3, 4, 5] | |
if demodulate or fused_modconv: # if not fused, skip | |
w = weight.unsqueeze(0) * styles.reshape(batch_size, 1, *rsizes) | |
if demodulate: | |
dcoefs = (w.square().sum(dim=ssizes) + 1e-8).rsqrt() # [NO] | |
if demodulate and fused_modconv: | |
w = w * dcoefs.reshape(batch_size, *rsizes, 1) # [NOIkk] (batch_size, out_channels, in_channels, kernel_size, kernel_size) | |
# Execute by scaling the activations before and after the convolution. | |
if not fused_modconv: | |
x = x * styles.to(x.dtype).reshape(batch_size, *rsizes) | |
if mode == '2d': | |
x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight) | |
elif mode == '3d': | |
x = conv3d(x=x, w=weight.to(x.dtype), up=up, down=down, padding=padding) | |
else: | |
raise NotImplementedError | |
if demodulate and noise is not None: | |
x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, *rsizes), noise.to(x.dtype)) # fused multiply add | |
elif demodulate: | |
x = x * dcoefs.to(x.dtype).reshape(batch_size, *rsizes) | |
elif noise is not None: | |
x = x.add_(noise.to(x.dtype)) | |
return x | |
# Execute as one fused op using grouped convolution. | |
with misc.suppress_tracer_warnings(): # this value will be treated as a constant | |
batch_size = int(batch_size) | |
x = x.reshape(1, -1, *x.shape[2:]) | |
w = w.reshape(-1, *w.shape[2:]) | |
if mode == '2d': | |
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight) | |
elif mode == '3d': | |
x = conv3d(x=x, w=w.to(x.dtype), up=up, down=down, padding=padding, groups=batch_size) | |
x = x.reshape(batch_size, -1, *x.shape[2:]) | |
if noise is not None: | |
x = x.add_(noise) | |
return x | |
#---------------------------------------------------------------------------- | |
class FullyConnectedLayer(torch.nn.Module): | |
def __init__(self, | |
in_features, # Number of input features. | |
out_features, # Number of output features. | |
bias = True, # Apply additive bias before the activation function? | |
activation = 'linear', # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier = 1, # Learning rate multiplier. | |
bias_init = 0, # Initial value for the additive bias. | |
): | |
super().__init__() | |
self.activation = activation | |
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier) | |
self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None | |
self.weight_gain = lr_multiplier / np.sqrt(in_features) | |
self.bias_gain = lr_multiplier | |
def forward(self, x): | |
w = self.weight.to(x.dtype) * self.weight_gain | |
b = self.bias | |
if b is not None: | |
b = b.to(x.dtype) | |
if self.bias_gain != 1: | |
b = b * self.bias_gain | |
if self.activation == 'linear' and b is not None: | |
x = torch.addmm(b.unsqueeze(0), x, w.t()) | |
else: | |
x = x.matmul(w.t()) | |
x = bias_act.bias_act(x, b, act=self.activation) | |
return x | |
#---------------------------------------------------------------------------- | |
class Conv2dLayer(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
kernel_size, # Width and height of the convolution kernel. | |
bias = True, # Apply additive bias before the activation function? | |
activation = 'linear', # Activation function: 'relu', 'lrelu', etc. | |
up = 1, # Integer upsampling factor. | |
down = 1, # Integer downsampling factor. | |
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp = None, # Clamp the output to +-X, None = disable clamping. | |
channels_last = False, # Expect the input to have memory_format=channels_last? | |
trainable = True, # Update the weights of this layer during training? | |
mode = '2d', | |
**unused | |
): | |
super().__init__() | |
self.activation = activation | |
self.up = up | |
self.down = down | |
self.conv_clamp = conv_clamp | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
self.padding = kernel_size // 2 | |
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) | |
self.act_gain = bias_act.activation_funcs[activation].def_gain | |
self.mode = mode | |
weight_shape = [out_channels, in_channels, kernel_size, kernel_size] | |
if mode == '3d': | |
weight_shape += [kernel_size] | |
memory_format = torch.channels_last if channels_last else torch.contiguous_format | |
weight = torch.randn(weight_shape).to(memory_format=memory_format) | |
bias = torch.zeros([out_channels]) if bias else None | |
if trainable: | |
self.weight = torch.nn.Parameter(weight) | |
self.bias = torch.nn.Parameter(bias) if bias is not None else None | |
else: | |
self.register_buffer('weight', weight) | |
if bias is not None: | |
self.register_buffer('bias', bias) | |
else: | |
self.bias = None | |
def forward(self, x, gain=1): | |
w = self.weight * self.weight_gain | |
b = self.bias.to(x.dtype) if self.bias is not None else None | |
flip_weight = (self.up == 1) # slightly faster | |
if self.mode == '2d': | |
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, flip_weight=flip_weight) | |
elif self.mode == '3d': | |
x = conv3d(x=x, w=w.to(x.dtype), up=self.up, down=self.down, padding=self.padding) | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp) | |
return x | |
# --------------------------------------------------------------------------- | |
class Blur(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
f = torch.Tensor([1, 2, 1]) | |
self.register_buffer('f', f) | |
def forward(self, x): | |
from kornia.filters import filter2d | |
f = self.f | |
f = f[None, None, :] * f [None, :, None] | |
return filter2d(x, f, normalized=True) | |
#---------------------------------------------------------------------------- | |
class MappingNetwork(torch.nn.Module): | |
def __init__(self, | |
z_dim, # Input latent (Z) dimensionality, 0 = no latent. | |
c_dim, # Conditioning label (C) dimensionality, 0 = no label. | |
w_dim, # Intermediate latent (W) dimensionality. | |
num_ws, # Number of intermediate latents to output, None = do not broadcast. | |
num_layers = 8, # Number of mapping layers. | |
embed_features = None, # Label embedding dimensionality, None = same as w_dim. | |
layer_features = None, # Number of intermediate features in the mapping layers, None = same as w_dim. | |
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers. | |
w_avg_beta = 0.995, # Decay for tracking the moving average of W during training, None = do not track. | |
**unused, | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.num_ws = num_ws | |
self.num_layers = num_layers | |
self.w_avg_beta = w_avg_beta | |
if embed_features is None: | |
embed_features = w_dim | |
if c_dim == 0: | |
embed_features = 0 | |
if layer_features is None: | |
layer_features = w_dim | |
features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim] | |
if c_dim > 0: # project label condition | |
self.embed = FullyConnectedLayer(c_dim, embed_features) | |
for idx in range(num_layers): | |
in_features = features_list[idx] | |
out_features = features_list[idx + 1] | |
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier) | |
setattr(self, f'fc{idx}', layer) | |
if num_ws is not None and w_avg_beta is not None: | |
self.register_buffer('w_avg', torch.zeros([w_dim])) | |
def forward(self, z=None, c=None, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False, styles=None, **unused_kwargs): | |
if styles is not None: | |
return styles | |
# Embed, normalize, and concat inputs. | |
x = None | |
with torch.autograd.profiler.record_function('input'): | |
if self.z_dim > 0: | |
misc.assert_shape(z, [None, self.z_dim]) | |
x = normalize_2nd_moment(z.to(torch.float32)) # normalize z to shpere | |
if self.c_dim > 0: | |
misc.assert_shape(c, [None, self.c_dim]) | |
y = normalize_2nd_moment(self.embed(c.to(torch.float32))) | |
x = torch.cat([x, y], dim=1) if x is not None else y | |
# Main layers. | |
for idx in range(self.num_layers): | |
layer = getattr(self, f'fc{idx}') | |
x = layer(x) | |
# Update moving average of W. | |
if self.w_avg_beta is not None and self.training and not skip_w_avg_update: | |
with torch.autograd.profiler.record_function('update_w_avg'): | |
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)) | |
# Broadcast. | |
if self.num_ws is not None: | |
with torch.autograd.profiler.record_function('broadcast'): | |
x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) | |
# Apply truncation. | |
if truncation_psi != 1: | |
with torch.autograd.profiler.record_function('truncate'): | |
assert self.w_avg_beta is not None | |
if self.num_ws is None or truncation_cutoff is None: | |
x = self.w_avg.lerp(x, truncation_psi) | |
else: | |
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi) | |
return x | |
#---------------------------------------------------------------------------- | |
class SynthesisLayer(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
w_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this layer. | |
kernel_size = 3, # Convolution kernel size. | |
up = 1, # Integer upsampling factor. | |
use_noise = True, # Enable noise input? | |
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. | |
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
channels_last = False, # Use channels_last format for the weights? | |
upsample_mode = 'default', # [default, bilinear, ray_comm, ray_attn, ray_penc] | |
use_group = False, | |
magnitude_ema_beta = -1, # -1 means not using magnitude ema | |
mode = '2d', # choose from 1d, 2d or 3d | |
**unused_kwargs | |
): | |
super().__init__() | |
self.resolution = resolution | |
self.up = up | |
self.use_noise = use_noise | |
self.activation = activation | |
self.conv_clamp = conv_clamp | |
self.upsample_mode = upsample_mode | |
self.mode = mode | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
if up == 2: | |
if 'pixelshuffle' in upsample_mode: | |
self.adapter = torch.nn.Sequential( | |
Conv2dLayer(out_channels, out_channels // 4, kernel_size=1, activation=activation), | |
Conv2dLayer(out_channels // 4, out_channels * 4, kernel_size=1, activation='linear'), | |
) | |
elif upsample_mode == 'liif': | |
from dnnlib.geometry import get_grids, local_ensemble | |
pi = get_grids(self.resolution//2, self.resolution//2, 'cpu', align=False).transpose(0,1) | |
po = get_grids(self.resolution, self.resolution, 'cpu', align=False).transpose(0,1) | |
diffs, coords, coeffs = local_ensemble(pi, po, self.resolution) | |
self.diffs = torch.nn.Parameter(diffs, requires_grad=False) | |
self.coords = torch.nn.Parameter(coords.float(), requires_grad=False) | |
self.coeffs = torch.nn.Parameter(coeffs, requires_grad=False) | |
add_dim = 2 | |
self.adapter = torch.nn.Sequential( | |
Conv2dLayer(out_channels + add_dim, out_channels // 2, kernel_size=1, activation=activation), | |
Conv2dLayer(out_channels // 2, out_channels, kernel_size=1, activation='linear'), | |
) | |
elif 'nn_cat' in upsample_mode: | |
self.adapter = torch.nn.Sequential( | |
Conv2dLayer(out_channels * 2, out_channels // 4, kernel_size=1, activation=activation), | |
Conv2dLayer(out_channels // 4, out_channels, kernel_size=1, activation='linear'), | |
) | |
elif 'ada' in upsample_mode: | |
self.adapter = torch.nn.Sequential( | |
Conv2dLayer(out_channels, 8, kernel_size=1, activation=activation), | |
Conv2dLayer(8, out_channels, kernel_size=1, activation='linear') | |
) | |
self.adapter[1].weight.data.zero_() | |
if 'blur' in upsample_mode: | |
self.blur = Blur() | |
self.padding = kernel_size // 2 | |
self.groups = 2 if use_group else 1 | |
self.act_gain = bias_act.activation_funcs[activation].def_gain | |
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) | |
memory_format = torch.channels_last if channels_last else torch.contiguous_format | |
weight_sizes = [out_channels // self.groups, in_channels, kernel_size, kernel_size] | |
if self.mode == '3d': | |
weight_sizes += [kernel_size] | |
weight = torch.randn(weight_sizes).to(memory_format=memory_format) | |
self.weight = torch.nn.Parameter(weight) | |
if use_noise: | |
if self.mode == '2d': | |
noise_sizes = [resolution, resolution] | |
elif self.mode == '3d': | |
noise_sizes = [resolution, resolution, resolution] | |
else: | |
raise NotImplementedError('not support for MLP') | |
self.register_buffer('noise_const', torch.randn(noise_sizes)) # HACK: for safety reasons | |
self.noise_strength = torch.nn.Parameter(torch.zeros([])) | |
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) | |
self.magnitude_ema_beta = magnitude_ema_beta | |
if magnitude_ema_beta > 0: | |
self.register_buffer('w_avg', torch.ones([])) # TODO: name for compitibality | |
def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1, skip_up=False, input_noise=None, **unused_kwargs): | |
assert noise_mode in ['random', 'const', 'none'] | |
batch_size = x.size(0) | |
if (self.magnitude_ema_beta > 0): | |
if self.training: # updating EMA. | |
with torch.autograd.profiler.record_function('update_magnitude_ema'): | |
magnitude_cur = x.detach().to(torch.float32).square().mean() | |
self.w_avg.copy_(magnitude_cur.lerp(self.w_avg, self.magnitude_ema_beta)) | |
input_gain = self.w_avg.rsqrt() | |
x = x * input_gain | |
styles = self.affine(w) # Batch x style_dim | |
if styles.size(0) < x.size(0): # for repeating | |
assert (x.size(0) // styles.size(0) * styles.size(0) == x.size(0)) | |
styles = repeat(styles, 'b c -> (b s) c', s=x.size(0) // styles.size(0)) | |
up = self.up if not skip_up else 1 | |
use_default = (self.upsample_mode == 'default') | |
noise = None | |
resample_filter = None | |
if use_default and (up > 1): | |
resample_filter = self.resample_filter | |
if self.use_noise: | |
if input_noise is not None: | |
noise = input_noise * self.noise_strength | |
elif noise_mode == 'random': | |
noise_sizes = [x.shape[0], 1, up * x.shape[2], up * x.shape[3]] | |
if self.mode == '3d': | |
noise_sizes += [up * x.shape[4]] | |
noise = torch.randn(noise_sizes, device=x.device) * self.noise_strength | |
elif noise_mode == 'const': | |
noise = self.noise_const * self.noise_strength | |
if noise.shape[-1] < (up * x.shape[3]): | |
noise = repeat(noise, 'h w -> h (s w)', s=up*x.shape[3]//noise.shape[-1]) | |
flip_weight = (up == 1) # slightly faster | |
x = modulated_conv2d( | |
x=x, weight=self.weight, styles=styles, | |
noise=noise if (use_default and not skip_up) else None, | |
up=up if use_default else 1, | |
padding=self.padding, | |
resample_filter=resample_filter, | |
flip_weight=flip_weight, | |
fused_modconv=fused_modconv, | |
groups=self.groups, | |
mode=self.mode | |
) | |
if (up == 2) and (not use_default): | |
resolution = x.size(-1) * 2 | |
if 'bilinear' in self.upsample_mode: | |
x = F.interpolate(x, size=(resolution, resolution), mode='bilinear', align_corners=True) | |
elif 'nearest' in self.upsample_mode: | |
x = F.interpolate(x, size=(resolution, resolution), mode='nearest') | |
x = upfirdn2d.filter2d(x, self.resample_filter) | |
elif 'bicubic' in self.upsample_mode: | |
x = F.interpolate(x, size=(resolution, resolution), mode='bicubic', align_corners=True) | |
elif 'pixelshuffle' in self.upsample_mode: # does not have rotation invariance | |
x = F.interpolate(x, size=(resolution, resolution), mode='nearest') + torch.pixel_shuffle(self.adapter(x), 2) | |
if not 'noblur' in self.upsample_mode: | |
x = upfirdn2d.filter2d(x, self.resample_filter) | |
elif 'nn_cat' in self.upsample_mode: | |
x_pad = x.new_zeros(*x.size()[:2], x.size(-2)+2, x.size(-1)+2) | |
x_pad[...,1:-1,1:-1] = x | |
xl, xu, xd, xr = x_pad[..., 1:-1, :-2], x_pad[..., :-2, 1:-1], x_pad[..., 2:, 1:-1], x_pad[..., 1:-1, 2:] | |
x1, x2, x3, x4 = xl + xu, xu + xr, xl + xd, xr + xd | |
xb = torch.stack([x1, x2, x3, x4], 2) / 2 | |
xb = torch.pixel_shuffle(xb.view(xb.size(0), -1, xb.size(-2), xb.size(-1)), 2) | |
xa = F.interpolate(x, size=(resolution, resolution), mode='nearest') | |
x = xa + self.adapter(torch.cat([xa, xb], 1)) | |
if not 'noblur' in self.upsample_mode: | |
x = upfirdn2d.filter2d(x, self.resample_filter) | |
elif self.upsample_mode == 'liif': # this is an old version | |
x = torch.stack([x[..., self.coords[j,:,:,0].long(), self.coords[j,:,:,1].long()] for j in range(4)], 0) | |
d = self.diffs[:, None].type_as(x).repeat(1,batch_size,1,1,1).permute(0,1,4,2,3) | |
x = self.adapter(torch.cat([x, d.type_as(x)], 2).reshape(batch_size*4,-1,*x.size()[-2:])) | |
x = (x.reshape(4,batch_size,*x.size()[-3:]) * self.coeffs[:,None,None].type_as(x)).sum(0) | |
else: | |
raise NotImplementedError | |
if up == 2: | |
if 'ada' in self.upsample_mode: | |
x = x + self.adapter(x) | |
if 'blur' in self.upsample_mode: | |
x = self.blur(x) | |
if (noise is not None) and (not use_default) and (not skip_up): | |
x = x.add_(noise.type_as(x)) | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp) | |
return x | |
#---------------------------------------------------------------------------- | |
class SynthesisLayer3(torch.nn.Module): | |
"""copy from the stylegan3 codebase with minor changes""" | |
def __init__(self, | |
w_dim, # Intermediate latent (W) dimensionality. | |
is_torgb, # Is this the final ToRGB layer? | |
is_critically_sampled, # Does this layer use critical sampling? | |
use_fp16, # Does this layer use FP16? | |
# Input & output specifications. | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
in_size, # Input spatial size: int or [width, height]. | |
out_size, # Output spatial size: int or [width, height]. | |
in_sampling_rate, # Input sampling rate (s). | |
out_sampling_rate, # Output sampling rate (s). | |
in_cutoff, # Input cutoff frequency (f_c). | |
out_cutoff, # Output cutoff frequency (f_c). | |
in_half_width, # Input transition band half-width (f_h). | |
out_half_width, # Output Transition band half-width (f_h). | |
# Hyperparameters. | |
kernel_size = 3, # Convolution kernel size. Ignored for final the ToRGB layer. | |
filter_size = 6, # Low-pass filter size relative to the lower resolution when up/downsampling. | |
lrelu_upsampling = 2, # Relative sampling rate for leaky ReLU. Ignored for final the ToRGB layer. | |
use_radial_filters = False, # Use radially symmetric downsampling filter? Ignored for critically sampled layers. | |
conv_clamp = 256, # Clamp the output to [-X, +X], None = disable clamping. | |
magnitude_ema_beta = 0.999, # Decay rate for the moving average of input magnitudes. | |
**unused_kwargs, | |
): | |
super().__init__() | |
self.w_dim = w_dim | |
self.is_torgb = is_torgb | |
self.is_critically_sampled = is_critically_sampled | |
self.use_fp16 = use_fp16 | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.in_size = np.broadcast_to(np.asarray(in_size), [2]) | |
self.out_size = np.broadcast_to(np.asarray(out_size), [2]) | |
self.in_sampling_rate = in_sampling_rate | |
self.out_sampling_rate = out_sampling_rate | |
self.tmp_sampling_rate = max(in_sampling_rate, out_sampling_rate) * (1 if is_torgb else lrelu_upsampling) | |
self.in_cutoff = in_cutoff | |
self.out_cutoff = out_cutoff | |
self.in_half_width = in_half_width | |
self.out_half_width = out_half_width | |
self.conv_kernel = 1 if is_torgb else kernel_size | |
self.conv_clamp = conv_clamp | |
self.magnitude_ema_beta = magnitude_ema_beta | |
# Setup parameters and buffers. | |
self.affine = FullyConnectedLayer(self.w_dim, self.in_channels, bias_init=1) | |
self.weight = torch.nn.Parameter(torch.randn([self.out_channels, self.in_channels, self.conv_kernel, self.conv_kernel])) | |
self.bias = torch.nn.Parameter(torch.zeros([self.out_channels])) | |
if magnitude_ema_beta > 0: | |
self.register_buffer('w_avg', torch.ones([])) | |
# Design upsampling filter. | |
self.up_factor = int(np.rint(self.tmp_sampling_rate / self.in_sampling_rate)) | |
assert self.in_sampling_rate * self.up_factor == self.tmp_sampling_rate | |
self.up_taps = filter_size * self.up_factor if self.up_factor > 1 and not self.is_torgb else 1 | |
self.register_buffer('up_filter', self.design_lowpass_filter( | |
numtaps=self.up_taps, cutoff=self.in_cutoff, width=self.in_half_width*2, fs=self.tmp_sampling_rate)) | |
# Design downsampling filter. | |
self.down_factor = int(np.rint(self.tmp_sampling_rate / self.out_sampling_rate)) | |
assert self.out_sampling_rate * self.down_factor == self.tmp_sampling_rate | |
self.down_taps = filter_size * self.down_factor if self.down_factor > 1 and not self.is_torgb else 1 | |
self.down_radial = use_radial_filters and not self.is_critically_sampled | |
self.register_buffer('down_filter', self.design_lowpass_filter( | |
numtaps=self.down_taps, cutoff=self.out_cutoff, width=self.out_half_width*2, fs=self.tmp_sampling_rate, radial=self.down_radial)) | |
# Compute padding. | |
pad_total = (self.out_size - 1) * self.down_factor + 1 # Desired output size before downsampling. | |
pad_total -= (self.in_size + self.conv_kernel - 1) * self.up_factor # Input size after upsampling. | |
pad_total += self.up_taps + self.down_taps - 2 # Size reduction caused by the filters. | |
pad_lo = (pad_total + self.up_factor) // 2 # Shift sample locations according to the symmetric interpretation (Appendix C.3). | |
pad_hi = pad_total - pad_lo | |
self.padding = [int(pad_lo[0]), int(pad_hi[0]), int(pad_lo[1]), int(pad_hi[1])] | |
def forward(self, x, w, noise_mode='random', force_fp32=False, **unused_kwargs): | |
assert noise_mode in ['random', 'const', 'none'] # unused | |
misc.assert_shape(x, [None, self.in_channels, int(self.in_size[1]), int(self.in_size[0])]) | |
misc.assert_shape(w, [x.shape[0], self.w_dim]) | |
# Track input magnitude. | |
if (self.magnitude_ema_beta > 0): | |
if self.training: # updating EMA. | |
with torch.autograd.profiler.record_function('update_magnitude_ema'): | |
magnitude_cur = x.detach().to(torch.float32).square().mean() | |
self.w_avg.copy_(magnitude_cur.lerp(self.w_avg, self.magnitude_ema_beta)) | |
input_gain = self.w_avg.rsqrt() | |
x = x * input_gain | |
# Execute affine layer. | |
styles = self.affine(w) | |
if self.is_torgb: | |
weight_gain = 1 / np.sqrt(self.in_channels * (self.conv_kernel ** 2)) | |
styles = styles * weight_gain | |
# Execute modulated conv2d. | |
dtype = torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == 'cuda') else torch.float32 | |
x = modulated_conv2d(x=x.to(dtype), weight=self.weight, styles=styles, padding=self.conv_kernel-1, up=1, fused_modconv=True) | |
# Execute bias, filtered leaky ReLU, and clamping. | |
gain = 1 if self.is_torgb else np.sqrt(2) | |
slope = 1 if self.is_torgb else 0.2 | |
x = filtered_lrelu.filtered_lrelu(x=x, fu=self.up_filter, fd=self.down_filter, b=self.bias.to(x.dtype), | |
up=self.up_factor, down=self.down_factor, padding=self.padding, gain=gain, slope=slope, clamp=self.conv_clamp) | |
# Ensure correct shape and dtype. | |
misc.assert_shape(x, [None, self.out_channels, int(self.out_size[1]), int(self.out_size[0])]) | |
assert x.dtype == dtype | |
return x | |
def design_lowpass_filter(numtaps, cutoff, width, fs, radial=False): | |
assert numtaps >= 1 | |
# Identity filter. | |
if numtaps == 1: | |
return None | |
# Separable Kaiser low-pass filter. | |
if not radial: | |
f = scipy.signal.firwin(numtaps=numtaps, cutoff=cutoff, width=width, fs=fs) | |
return torch.as_tensor(f, dtype=torch.float32) | |
# Radially symmetric jinc-based filter. | |
x = (np.arange(numtaps) - (numtaps - 1) / 2) / fs | |
r = np.hypot(*np.meshgrid(x, x)) | |
f = scipy.special.j1(2 * cutoff * (np.pi * r)) / (np.pi * r) | |
beta = scipy.signal.kaiser_beta(scipy.signal.kaiser_atten(numtaps, width / (fs / 2))) | |
w = np.kaiser(numtaps, beta) | |
f *= np.outer(w, w) | |
f /= np.sum(f) | |
return torch.as_tensor(f, dtype=torch.float32) | |
def extra_repr(self): | |
return '\n'.join([ | |
f'w_dim={self.w_dim:d}, is_torgb={self.is_torgb},', | |
f'is_critically_sampled={self.is_critically_sampled}, use_fp16={self.use_fp16},', | |
f'in_sampling_rate={self.in_sampling_rate:g}, out_sampling_rate={self.out_sampling_rate:g},', | |
f'in_cutoff={self.in_cutoff:g}, out_cutoff={self.out_cutoff:g},', | |
f'in_half_width={self.in_half_width:g}, out_half_width={self.out_half_width:g},', | |
f'in_size={list(self.in_size)}, out_size={list(self.out_size)},', | |
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}']) | |
#---------------------------------------------------------------------------- | |
class ToRGBLayer(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, w_dim=0, kernel_size=1, conv_clamp=None, channels_last=False, mode='2d', **unused): | |
super().__init__() | |
self.conv_clamp = conv_clamp | |
self.mode = mode | |
weight_shape = [out_channels, in_channels, kernel_size, kernel_size] | |
if mode == '3d': | |
weight_shape += [kernel_size] | |
if w_dim > 0: | |
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) | |
memory_format = torch.channels_last if channels_last else torch.contiguous_format | |
self.weight = torch.nn.Parameter(torch.randn(weight_shape).to(memory_format=memory_format)) | |
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) | |
self.weight_gain = 1 / np.sqrt(np.prod(weight_shape[1:])) | |
else: | |
assert kernel_size == 1, "does not support larger kernel sizes for now. used in NeRF" | |
assert mode != '3d', "does not support 3D convolution for now" | |
self.weight = torch.nn.Parameter(torch.Tensor(out_channels, in_channels)) | |
self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) | |
self.weight_gain = 1. | |
# initialization | |
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | |
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight) | |
bound = 1 / math.sqrt(fan_in) | |
torch.nn.init.uniform_(self.bias, -bound, bound) | |
def forward(self, x, w=None, fused_modconv=True): | |
if w is not None: | |
styles = self.affine(w) * self.weight_gain | |
if x.size(0) > styles.size(0): | |
assert (x.size(0) // styles.size(0) * styles.size(0) == x.size(0)) | |
styles = repeat(styles, 'b c -> (b s) c', s=x.size(0) // styles.size(0)) | |
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, demodulate=False, fused_modconv=fused_modconv, mode=self.mode) | |
x = bias_act.bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp) | |
else: | |
if x.ndim == 2: | |
x = F.linear(x, self.weight, self.bias) | |
else: | |
x = F.conv2d(x, self.weight[:,:,None,None], self.bias) | |
return x | |
#---------------------------------------------------------------------------- | |
class SynthesisBlock(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels, 0 = first block. | |
out_channels, # Number of output channels. | |
w_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this block. | |
img_channels, # Number of output color channels. | |
is_last, # Is this the last block? | |
architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'. | |
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
use_fp16 = False, # Use FP16 for this block? | |
fp16_channels_last = False, # Use channels-last memory format with FP16? | |
use_single_layer = False, # use only one instead of two synthesis layer | |
disable_upsample = False, | |
**layer_kwargs, # Arguments for SynthesisLayer. | |
): | |
assert architecture in ['orig', 'skip', 'resnet'] | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.w_dim = w_dim | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.is_last = is_last | |
self.architecture = architecture | |
self.use_fp16 = use_fp16 | |
self.channels_last = (use_fp16 and fp16_channels_last) | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
self.num_conv = 0 | |
self.num_torgb = 0 | |
self.groups = 1 | |
self.use_single_layer = use_single_layer | |
self.margin = layer_kwargs.get('margin', 0) | |
self.upsample_mode = layer_kwargs.get('upsample_mode', 'default') | |
self.disable_upsample = disable_upsample | |
self.mode = layer_kwargs.get('mode', '2d') | |
if in_channels == 0: | |
const_sizes = [out_channels, resolution, resolution] | |
if self.mode == '3d': | |
const_sizes = const_sizes + [resolution] | |
self.const = torch.nn.Parameter(torch.randn(const_sizes)) | |
if in_channels != 0: | |
self.conv0 = util.construct_class_by_name( | |
class_name=layer_kwargs.get('layer_name', "training.networks.SynthesisLayer"), | |
in_channels=in_channels, out_channels=out_channels, | |
w_dim=w_dim, resolution=resolution, | |
up=2 if (not disable_upsample) else 1, | |
resample_filter=resample_filter, conv_clamp=conv_clamp, | |
channels_last=self.channels_last, **layer_kwargs) | |
self.num_conv += 1 | |
if not self.use_single_layer: | |
self.conv1 = util.construct_class_by_name( | |
class_name=layer_kwargs.get('layer_name', "training.networks.SynthesisLayer"), | |
in_channels=out_channels, out_channels=out_channels, | |
w_dim=w_dim, resolution=resolution, | |
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) | |
self.num_conv += 1 | |
if is_last or architecture == 'skip': | |
self.torgb = ToRGBLayer( | |
out_channels, img_channels, w_dim=w_dim, | |
conv_clamp=conv_clamp, channels_last=self.channels_last, | |
groups=self.groups, mode=self.mode) | |
self.num_torgb += 1 | |
if in_channels != 0 and architecture == 'resnet': | |
self.skip = Conv2dLayer( | |
in_channels, out_channels, kernel_size=1, bias=False, up=2, | |
resample_filter=resample_filter, | |
channels_last=self.channels_last, | |
mode=self.mode) | |
def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, add_on=None, block_noise=None, disable_rgb=False, **layer_kwargs): | |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) | |
w_iter = iter(ws.unbind(dim=1)) | |
dtype = torch.float16 if (self.use_fp16 and x.device.type == 'cuda') and not force_fp32 else torch.float32 | |
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format | |
if fused_modconv is None: | |
with misc.suppress_tracer_warnings(): # this value will be treated as a constant | |
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) | |
# Input. | |
if self.in_channels == 0: | |
x = self.const.to(dtype=dtype, memory_format=memory_format) | |
x = x.unsqueeze(0).expand(ws.shape[0], *x.size()) | |
else: | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# Main layers. | |
if add_on is not None: | |
add_on = add_on.to(dtype=dtype, memory_format=memory_format) | |
if self.in_channels == 0: | |
if not self.use_single_layer: | |
layer_kwargs['input_noise'] = block_noise[:,1:2] if block_noise is not None else None | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
elif self.architecture == 'resnet': | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
layer_kwargs['input_noise'] = block_noise[:,0:1] if block_noise is not None else None | |
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
if not self.use_single_layer: | |
layer_kwargs['input_noise'] = block_noise[:,1:2] if block_noise is not None else None | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) | |
x = y.add_(x) | |
else: | |
layer_kwargs['input_noise'] = block_noise[:,0:1] if block_noise is not None else None | |
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
if not self.use_single_layer: | |
layer_kwargs['input_noise'] = block_noise[:,1:2] if block_noise is not None else None | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
# ToRGB. | |
if img is not None: | |
if img.size(-1) * 2 == x.size(-1): | |
if (self.upsample_mode == 'bilinear_all') or (self.upsample_mode == 'bilinear_ada'): | |
img = F.interpolate(img, scale_factor=2, mode='bilinear', align_corners=True) | |
else: | |
img = upfirdn2d.upsample2d(img, self.resample_filter) # this is upsampling. Not sure about details and why they do this.. | |
elif img.size(-1) == x.size(-1): | |
pass | |
else: | |
raise NotImplementedError | |
if self.is_last or self.architecture == 'skip': | |
if not disable_rgb: | |
y = x if add_on is None else x + add_on | |
y = self.torgb(y, next(w_iter), fused_modconv=fused_modconv) | |
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) | |
img = img.add_(y) if img is not None else y | |
else: | |
img = None | |
assert x.dtype == dtype | |
assert img is None or img.dtype == torch.float32 | |
return x, img | |
#---------------------------------------------------------------------------- | |
class SynthesisBlock3(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels, 0 = first block. | |
out_channels, # Number of output channels. | |
w_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this block. | |
img_channels, # Number of output color channels. | |
block_id, | |
stylegan3_hyperam, | |
use_fp16 = False, # Use FP16 for this block? | |
**layer_kwargs, # Arguments for SynthesisLayer. | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.w_dim = w_dim | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.num_conv = 0 | |
self.num_torgb = 0 | |
self.use_fp16 = use_fp16 | |
is_critically_sampled = block_id == (len(stylegan3_hyperam['sampling_rates'][:-1]) // 2 - 1) | |
sizes, sampling_rates, cutoffs, half_widths = \ | |
stylegan3_hyperam['sizes'], stylegan3_hyperam['sampling_rates'], \ | |
stylegan3_hyperam['cutoffs'], stylegan3_hyperam['half_widths'] | |
# each block has two layer | |
prev = max(block_id * 2 - 1, 0) | |
curr = block_id * 2 | |
self.conv0 = util.construct_class_by_name( | |
class_name=layer_kwargs.get('layer_name', "training.networks.SynthesisLayer3"), | |
w_dim=self.w_dim, | |
is_torgb=False, | |
is_critically_sampled=is_critically_sampled, | |
use_fp16=use_fp16, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
in_size=int(sizes[prev]), | |
out_size=int(sizes[curr]), | |
in_sampling_rate=int(sampling_rates[prev]), | |
out_sampling_rate=int(sampling_rates[curr]), | |
in_cutoff=cutoffs[prev], | |
out_cutoff=cutoffs[curr], | |
in_half_width=half_widths[prev], | |
out_half_width=half_widths[curr], | |
use_radial_filters=True, | |
**layer_kwargs) | |
self.num_conv += 1 | |
prev = block_id * 2 | |
curr = block_id * 2 + 1 | |
self.conv1 = util.construct_class_by_name( | |
class_name=layer_kwargs.get('layer_name', "training.networks.SynthesisLayer3"), | |
w_dim=self.w_dim, | |
is_torgb=False, | |
is_critically_sampled=is_critically_sampled, | |
use_fp16=use_fp16, | |
in_channels=out_channels, | |
out_channels=out_channels, | |
in_size=int(sizes[prev]), | |
out_size=int(sizes[curr]), | |
in_sampling_rate=int(sampling_rates[prev]), | |
out_sampling_rate=int(sampling_rates[curr]), | |
in_cutoff=cutoffs[prev], | |
out_cutoff=cutoffs[curr], | |
in_half_width=half_widths[prev], | |
out_half_width=half_widths[curr], | |
use_radial_filters=True, | |
**layer_kwargs) | |
self.num_conv += 1 | |
# toRGB layer (used for progressive growing) | |
self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim) | |
self.num_torgb += 1 | |
def forward(self, x, img, ws, force_fp32=False, add_on=None, disable_rgb=False, **layer_kwargs): | |
w_iter = iter(ws.unbind(dim=1)) | |
dtype = torch.float16 if (self.use_fp16 and x.device.type == 'cuda') and not force_fp32 else torch.float32 | |
memory_format = torch.contiguous_format | |
# Main layers. | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
if add_on is not None: | |
add_on = add_on.to(dtype=dtype, memory_format=memory_format) | |
x = self.conv0(x, next(w_iter), **layer_kwargs) | |
x = self.conv1(x, next(w_iter), **layer_kwargs) | |
assert img is None, "currently not support." | |
if not disable_rgb: | |
y = x if add_on is None else x + add_on | |
y = self.torgb(y, next(w_iter), fused_modconv=True) | |
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) | |
img = y | |
assert x.dtype == dtype | |
assert img is None or img.dtype == torch.float32 | |
return x, img | |
#---------------------------------------------------------------------------- | |
class SynthesisNetwork(torch.nn.Module): | |
def __init__(self, | |
w_dim, # Intermediate latent (W) dimensionality. | |
img_resolution, # Output image resolution. | |
img_channels, # Number of color channels. | |
channel_base = 1, # Overall multiplier for the number of channels. | |
channel_max = 512, # Maximum number of channels in any layer. | |
num_fp16_res = 0, # Use FP16 for the N highest resolutions. | |
**block_kwargs, # Arguments for SynthesisBlock. | |
): | |
assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0 | |
super().__init__() | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.block_resolutions = [2 ** i for i in range(2, self.img_resolution_log2 + 1)] | |
channel_base = int(channel_base * 32768) | |
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions} | |
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8) | |
self.channels_dict = channels_dict | |
self.num_ws = 0 | |
for res in self.block_resolutions: | |
in_channels = channels_dict[res // 2] if res > 4 else 0 | |
out_channels = channels_dict[res] | |
use_fp16 = (res >= fp16_resolution) | |
is_last = (res == self.img_resolution) | |
block = util.construct_class_by_name( | |
class_name=block_kwargs.get('block_name', "training.networks.SynthesisBlock"), | |
in_channels=in_channels, out_channels=out_channels, w_dim=w_dim, resolution=res, | |
img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs) | |
self.num_ws += block.num_conv | |
if is_last: | |
self.num_ws += block.num_torgb | |
setattr(self, f'b{res}', block) | |
def forward(self, ws, **block_kwargs): | |
block_ws = [] | |
# this part is to slice the style matrices (W) to each layer (conv/RGB) | |
with torch.autograd.profiler.record_function('split_ws'): | |
misc.assert_shape(ws, [None, self.num_ws, self.w_dim]) | |
ws = ws.to(torch.float32) | |
w_idx = 0 | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) | |
w_idx += block.num_conv | |
x = img = None | |
for res, cur_ws in zip(self.block_resolutions, block_ws): | |
block = getattr(self, f'b{res}') | |
x, img = block(x, img, cur_ws, **block_kwargs) | |
return img | |
def get_current_resolution(self): | |
return [self.img_resolution] # For compitibility | |
#---------------------------------------------------------------------------- | |
class Generator(torch.nn.Module): | |
def __init__(self, | |
z_dim, # Input latent (Z) dimensionality. | |
c_dim, # Conditioning label (C) dimensionality. | |
w_dim, # Intermediate latent (W) dimensionality. | |
img_resolution, # Output resolution. | |
img_channels, # Number of output color channels. | |
mapping_kwargs = {}, # Arguments for MappingNetwork. | |
synthesis_kwargs = {}, # Arguments for SynthesisNetwork. | |
encoder_kwargs = {}, # Arguments for Encoder (optional) | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.img_channels = img_channels | |
self.synthesis = util.construct_class_by_name( | |
class_name=synthesis_kwargs.get('module_name', "training.networks.SynthesisNetwork"), | |
w_dim=w_dim, img_resolution=img_resolution, img_channels=img_channels, **synthesis_kwargs) | |
self.num_ws = self.synthesis.num_ws | |
self.mapping = None | |
self.encoder = None | |
if len(mapping_kwargs) > 0: # Use mapping network | |
self.mapping = util.construct_class_by_name( | |
class_name=mapping_kwargs.get('module_name', "training.networks.MappingNetwork"), | |
z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs) | |
if len(encoder_kwargs) > 0: # Use Image-Encoder | |
encoder_kwargs['model_kwargs'].update({'num_ws': self.num_ws, 'w_dim': self.w_dim}) | |
self.encoder = util.construct_class_by_name( | |
img_resolution=img_resolution, | |
img_channels=img_channels, | |
**encoder_kwargs) | |
def forward(self, z=None, c=None, styles=None, truncation_psi=1, truncation_cutoff=None, img=None, **synthesis_kwargs): | |
if styles is None: | |
assert z is not None | |
if (self.encoder is not None) and (img is not None): #TODO: debug | |
outputs = self.encoder(img) | |
ws = outputs['ws'] | |
if ('camera' in outputs) and ('camera_mode' not in synthesis_kwargs): | |
synthesis_kwargs['camera_RT'] = outputs['camera'] | |
else: | |
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, **synthesis_kwargs) | |
else: | |
ws = styles | |
img = self.synthesis(ws, **synthesis_kwargs) | |
return img | |
def get_final_output(self, *args, **kwargs): | |
img = self.forward(*args, **kwargs) | |
if isinstance(img, list): | |
return img[-1] | |
elif isinstance(img, dict): | |
return img['img'] | |
return img | |
#---------------------------------------------------------------------------- | |
class DiscriminatorBlock(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels, 0 = first block. | |
tmp_channels, # Number of intermediate channels. | |
out_channels, # Number of output channels. | |
resolution, # Resolution of this block. | |
img_channels, # Number of input color channels. | |
first_layer_idx, # Index of the first layer. | |
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. | |
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
use_fp16 = False, # Use FP16 for this block? | |
fp16_channels_last = False, # Use channels-last memory format with FP16? | |
freeze_layers = 0, # Freeze-D: Number of layers to freeze. | |
): | |
assert in_channels in [0, tmp_channels] | |
assert architecture in ['orig', 'skip', 'resnet'] | |
super().__init__() | |
self.in_channels = in_channels | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.first_layer_idx = first_layer_idx | |
self.architecture = architecture | |
self.use_fp16 = use_fp16 | |
self.channels_last = (use_fp16 and fp16_channels_last) | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
self.num_layers = 0 | |
def trainable_gen(): | |
while True: | |
layer_idx = self.first_layer_idx + self.num_layers | |
trainable = (layer_idx >= freeze_layers) | |
self.num_layers += 1 | |
yield trainable | |
trainable_iter = trainable_gen() | |
if in_channels == 0 or architecture == 'skip': | |
self.fromrgb = Conv2dLayer(img_channels, tmp_channels, kernel_size=1, activation=activation, | |
trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last) | |
self.conv0 = Conv2dLayer(tmp_channels, tmp_channels, kernel_size=3, activation=activation, | |
trainable=next(trainable_iter), conv_clamp=conv_clamp, channels_last=self.channels_last) | |
self.conv1 = Conv2dLayer(tmp_channels, out_channels, kernel_size=3, activation=activation, down=2, | |
trainable=next(trainable_iter), resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last) | |
if architecture == 'resnet': | |
self.skip = Conv2dLayer(tmp_channels, out_channels, kernel_size=1, bias=False, down=2, | |
trainable=next(trainable_iter), resample_filter=resample_filter, channels_last=self.channels_last) | |
def forward(self, x, img, force_fp32=False, downsampler=None): | |
dtype = torch.float16 if (self.use_fp16 and x.device.type == 'cuda') and not force_fp32 else torch.float32 | |
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format | |
# Input. | |
if x is not None: | |
misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution]) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# FromRGB. | |
if self.in_channels == 0 or self.architecture == 'skip': | |
misc.assert_shape(img, [None, self.img_channels, self.resolution, self.resolution]) | |
img = img.to(dtype=dtype, memory_format=memory_format) | |
y = self.fromrgb(img) | |
x = x + y if x is not None else y | |
if self.architecture != 'skip': | |
img = None | |
elif downsampler is not None: | |
img = downsampler(img, 2) | |
else: | |
img = upfirdn2d.downsample2d(img, self.resample_filter) | |
# Main layers. | |
if self.architecture == 'resnet': | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0(x) | |
x = self.conv1(x, gain=np.sqrt(0.5)) | |
x = y.add_(x) | |
else: | |
x = self.conv0(x) | |
x = self.conv1(x) | |
assert x.dtype == dtype | |
return x, img | |
#---------------------------------------------------------------------------- | |
class MinibatchStdLayer(torch.nn.Module): | |
def __init__(self, group_size, num_channels=1): | |
super().__init__() | |
self.group_size = group_size | |
self.num_channels = num_channels | |
def forward(self, x): | |
N, C, H, W = x.shape | |
with misc.suppress_tracer_warnings(): # as_tensor results are registered as constants | |
G = torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N)) if self.group_size is not None else N | |
F = self.num_channels | |
c = C // F | |
y = x.reshape(G, -1, F, c, H, W) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c. | |
y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group. | |
y = y.square().mean(dim=0) # [nFcHW] Calc variance over group. | |
y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group. | |
y = y.mean(dim=[2,3,4]) # [nF] Take average over channels and pixels. | |
y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions. | |
y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels. | |
x = torch.cat([x, y], dim=1) # [NCHW] Append to input as new channels. | |
return x | |
#---------------------------------------------------------------------------- | |
class DiscriminatorEpilogue(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels. | |
cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label. | |
resolution, # Resolution of this block. | |
img_channels, # Number of input color channels. | |
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch. | |
mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable. | |
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. | |
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
final_channels = 1, # for classification it is always 1. | |
): | |
assert architecture in ['orig', 'skip', 'resnet'] | |
super().__init__() | |
self.in_channels = in_channels | |
self.final_channels = final_channels | |
self.cmap_dim = cmap_dim | |
self.resolution = resolution | |
self.img_channels = img_channels | |
self.architecture = architecture | |
if architecture == 'skip': | |
self.fromrgb = Conv2dLayer(img_channels, in_channels, kernel_size=1, activation=activation) | |
self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels) if mbstd_num_channels > 0 else None | |
self.conv = Conv2dLayer(in_channels + mbstd_num_channels, in_channels, kernel_size=3, activation=activation, conv_clamp=conv_clamp) | |
self.fc = FullyConnectedLayer(in_channels * (resolution ** 2), in_channels, activation=activation) | |
self.out = FullyConnectedLayer(in_channels, final_channels if cmap_dim == 0 else cmap_dim) | |
def forward(self, x, img, cmap, force_fp32=False): | |
misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution]) # [NCHW] | |
_ = force_fp32 # unused | |
dtype = torch.float32 | |
memory_format = torch.contiguous_format | |
# FromRGB. | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
if self.architecture == 'skip': | |
misc.assert_shape(img, [None, self.img_channels, self.resolution, self.resolution]) | |
img = img.to(dtype=dtype, memory_format=memory_format) | |
x = x + self.fromrgb(img) | |
# Main layers. | |
if self.mbstd is not None: | |
x = self.mbstd(x) | |
x = self.conv(x) | |
x = self.fc(x.flatten(1)) | |
x = self.out(x) | |
# Conditioning. | |
if self.cmap_dim > 0: | |
if not isinstance(cmap, list): | |
cmap = [cmap] # in case of multiple conditions. a trick (TODO) | |
x = [(x * c).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) for c in cmap] | |
x = sum(x) / len(cmap) | |
assert x.dtype == dtype | |
return x | |
#---------------------------------------------------------------------------- | |
class Discriminator(torch.nn.Module): # The original StyleGAN2 discriminator | |
def __init__(self, | |
c_dim, # Conditioning label (C) dimensionality. | |
img_resolution, # Input resolution. | |
img_channels, # Number of input color channels. | |
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'. | |
channel_base = 32768, # Overall multiplier for the number of channels. | |
channel_max = 512, # Maximum number of channels in any layer. | |
num_fp16_res = 0, # Use FP16 for the N highest resolutions. | |
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default. | |
block_kwargs = {}, # Arguments for DiscriminatorBlock. | |
mapping_kwargs = {}, # Arguments for MappingNetwork. | |
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue. | |
): | |
super().__init__() | |
self.c_dim = c_dim | |
self.img_resolution = img_resolution | |
self.img_resolution_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)] | |
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]} | |
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8) | |
if cmap_dim is None: | |
cmap_dim = channels_dict[4] | |
if c_dim == 0: | |
cmap_dim = 0 | |
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp) | |
cur_layer_idx = 0 | |
for res in self.block_resolutions: | |
in_channels = channels_dict[res] if res < img_resolution else 0 | |
tmp_channels = channels_dict[res] | |
out_channels = channels_dict[res // 2] | |
use_fp16 = (res >= fp16_resolution) | |
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res, | |
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs) | |
setattr(self, f'b{res}', block) | |
cur_layer_idx += block.num_layers | |
if c_dim > 0: | |
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs) | |
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs) | |
def forward(self, img, c, **block_kwargs): | |
x = None | |
if isinstance(img, dict): | |
img = img['img'] | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
x, img = block(x, img, **block_kwargs) | |
cmap = None | |
if self.c_dim > 0: | |
cmap = self.mapping(None, c) | |
x = self.b4(x, img, cmap) | |
return x | |
#---------------------------------------------------------------------------- | |
# encoders maybe used for inversion (not cleaned) | |
class EncoderResBlock(torch.nn.Module): | |
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
self.conv1 = Conv2dLayer(in_channel, in_channel, 3, activation='lrelu') | |
self.conv2 = Conv2dLayer(in_channel, out_channel, 3, down=2, activation='lrelu') | |
self.skip = Conv2dLayer(in_channel, out_channel, 1, down=2, activation='linear', bias=False) | |
def forward(self, input): | |
out = self.conv1(input) | |
out = self.conv2(out) | |
skip = self.skip(input) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class EqualConv2d(torch.nn.Module): | |
def __init__( | |
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True | |
): | |
super().__init__() | |
new_scale = 1.0 | |
self.weight = torch.nn.Parameter( | |
torch.randn(out_channel, in_channel, kernel_size, kernel_size) * new_scale | |
) | |
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
self.stride = stride | |
self.padding = padding | |
if bias: | |
self.bias = torch.nn.Parameter(torch.zeros(out_channel)) | |
else: | |
self.bias = None | |
def forward(self, input): | |
out = F.conv2d( | |
input, | |
self.weight * self.scale, | |
bias=self.bias, | |
stride=self.stride, | |
padding=self.padding, | |
) | |
return out | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' | |
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' | |
) | |
class Encoder(torch.nn.Module): | |
def __init__(self, size, n_latents, w_dim=512, add_dim=0, **unused): | |
super().__init__() | |
channels = { | |
4: 512, | |
8: 512, | |
16: 512, | |
32: 512, | |
64: 256, | |
128: 128, | |
256: 64, | |
512: 32, | |
1024: 16 | |
} | |
self.w_dim = w_dim | |
self.add_dim = add_dim | |
log_size = int(math.log(size, 2)) | |
self.n_latents = n_latents | |
convs = [Conv2dLayer(3, channels[size], 1)] | |
in_channel = channels[size] | |
for i in range(log_size, 2, -1): | |
out_channel = channels[2 ** (i - 1)] | |
convs.append(EncoderResBlock(in_channel, out_channel)) | |
in_channel = out_channel | |
self.convs = torch.nn.Sequential(*convs) | |
self.projector = EqualConv2d(in_channel, self.n_latents*self.w_dim + add_dim, 4, padding=0, bias=False) | |
def forward(self, input): | |
out = self.convs(input) | |
out = self.projector(out) | |
pws, pcm = out[:, :-2], out[:, -2:] | |
pws = pws.view(len(input), self.n_latents, self.w_dim) | |
pcm = pcm.view(len(input), self.add_dim) | |
return pws, pcm | |
class ResNetEncoder(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
import torchvision | |
resnet_net = torchvision.models.resnet18(pretrained=True) | |
modules = list(resnet_net.children())[:-1] | |
self.convs = torch.nn.Sequential(*modules) | |
self.requires_grad_(True) | |
self.train() | |
def preprocess_tensor(self, x): | |
x = F.interpolate(x, size=(224, 224), mode='bicubic', align_corners=False) | |
return x | |
def forward(self, input): | |
out = self.convs(self.preprocess_tensor(input)) | |
return out[:, :, 0, 0] | |
class CLIPEncoder(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
import clip | |
clip_net, _ = clip.load('ViT-B/32', device='cpu', jit=False) | |
self.encoder = clip_net.visual | |
for p in self.encoder.parameters(): | |
p.requires_grad_(True) | |
def preprocess_tensor(self, x): | |
import PIL.Image | |
import torchvision.transforms.functional as TF | |
x = x * 0.5 + 0.5 # mapping to 0~1 | |
x = TF.resize(x, size=224, interpolation=PIL.Image.BICUBIC) | |
x = TF.normalize(x, (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
return x | |
def forward(self, input): | |
out = self.encoder(self.preprocess_tensor(input)) | |
return out | |
# --------------------------------------------------------------------------------------------------- # | |
# VolumeGAN thanks https://gist.github.com/justimyhxu/a96f5ac25480d733f3151adb8142d706 | |
class InstanceNormLayer3d(torch.nn.Module): | |
"""Implements instance normalization layer.""" | |
def __init__(self, num_features, epsilon=1e-8, affine=False): | |
super().__init__() | |
self.eps = epsilon | |
self.affine = affine | |
if self.affine: | |
self.weight = torch.nn.Parameter(torch.Tensor(1, num_features,1,1,1)) | |
self.bias = torch.nn.Parameter(torch.Tensor(1, num_features,1,1,1)) | |
self.weight.data.uniform_() | |
self.bias.data.zero_() | |
def forward(self, x, weight=None, bias=None): | |
x = x - torch.mean(x, dim=[2, 3, 4], keepdim=True) | |
norm = torch.sqrt( | |
torch.mean(x**2, dim=[2, 3, 4], keepdim=True) + self.eps) | |
x = x / norm | |
isnot_input_none = weight is not None and bias is not None | |
assert (isnot_input_none and not self.affine) or (not isnot_input_none and self.affine) | |
if self.affine: | |
x = x*self.weight + self.bias | |
else: | |
x = x*weight + bias | |
return x | |
class FeatureVolume(torch.nn.Module): | |
def __init__( | |
self, | |
feat_res=32, | |
init_res=4, | |
base_channels=256, | |
output_channels=32, | |
z_dim=256, | |
use_mapping=True, | |
**kwargs | |
): | |
super().__init__() | |
self.num_stages = int(np.log2(feat_res // init_res)) + 1 | |
self.use_mapping = use_mapping | |
self.const = nn.Parameter( | |
torch.ones(1, base_channels, init_res, init_res, init_res)) | |
inplanes = base_channels | |
outplanes = base_channels | |
self.stage_channels = [] | |
for i in range(self.num_stages): | |
conv = nn.Conv3d(inplanes, | |
outplanes, | |
kernel_size=(3, 3, 3), | |
padding=(1, 1, 1)) | |
self.stage_channels.append(outplanes) | |
self.add_module(f'layer{i}', conv) | |
instance_norm = InstanceNormLayer3d(num_features=outplanes, affine=not use_mapping) | |
self.add_module(f'instance_norm{i}', instance_norm) | |
inplanes = outplanes | |
outplanes = max(outplanes // 2, output_channels) | |
if i == self.num_stages - 1: | |
outplanes = output_channels | |
if self.use_mapping: | |
self.mapping_network = CustomMappingNetwork( | |
z_dim, 256, | |
sum(self.stage_channels) * 2) | |
self.upsample = UpsamplingLayer() | |
self.lrelu = nn.LeakyReLU(negative_slope=0.2) | |
def forward(self, z, **kwargs): | |
if self.use_mapping: | |
scales, shifts, style = self.mapping_network(z) | |
x = self.const.repeat(z.shape[0], 1, 1, 1, 1) | |
for idx in range(self.num_stages): | |
if idx != 0: | |
x = self.upsample(x) | |
conv_layer = self.__getattr__(f'layer{idx}') | |
x = conv_layer(x) | |
instance_norm = self.__getattr__(f'instance_norm{idx}') | |
if self.use_mapping: | |
scale = scales[:, sum(self.stage_channels[:idx]):sum(self.stage_channels[:idx + 1])] | |
shift = shifts[:, sum(self.stage_channels[:idx]):sum(self.stage_channels[:idx + 1])] | |
scale = scale.view(scale.shape + (1, 1, 1)) | |
shift = shift.view(shift.shape + (1, 1, 1)) | |
else: | |
scale, shift = None, None | |
x = instance_norm(x, weight=scale, bias=shift) | |
x = self.lrelu(x) | |
return x |