// Copyright (c) Facebook, Inc. and its affiliates.All Rights Reserved // Please refer to original code: https://github.com/NVlabs/instant-ngp // and the pytorch wrapper from https://github.com/ashawkey/torch-ngp #include #include #include #include #include #include template __host__ __device__ T div_round_up(T val, T divisor) { return (val + divisor - 1) / divisor; } template __device__ uint32_t fast_hash(const uint32_t pos_grid[D]) { static_assert(D <= 7, "fast_hash can only hash up to 7 dimensions."); // While 1 is technically not a good prime for hashing (or a prime at all), it helps memory coherence // and is sufficient for our use case of obtaining a uniformly colliding index from high-dimensional // coordinates. constexpr uint32_t primes[7] = { 1, 19349663, 83492791, 25165843, 6291469, 12582917, 3145739 }; uint32_t result = 0; #pragma unroll for (uint32_t i = 0; i < D; ++i) { result ^= pos_grid[i] * primes[i]; } return result; } template __device__ uint32_t get_grid_index(const uint32_t ch, const uint32_t hashmap_size, const uint32_t resolution, const uint32_t pos_grid[D], const uint32_t mode) { uint32_t stride = 1; uint32_t index = 0; switch(mode) { case 0: // fast-hash #pragma unroll for (uint32_t d = 0; d < D && stride <= hashmap_size; d++) { // printf("get_grid_index d=%d, pos_grid[d]=%d, stride=%d, reso=%d\n", d, pos_grid[d], stride, resolution); index += pos_grid[d] * stride; stride *= (resolution + 1); } if (stride > hashmap_size) { //printf("hash because %d > %d\n", stride, hashmap_size); index = fast_hash(pos_grid); //printf("hashed (%d, %d) = %d to %d in %d\n", pos_grid[0], pos_grid[1], pos_grid[0] + resolution * pos_grid[1], index % hashmap_size, hashmap_size); } index = index % hashmap_size; break; case 1: // grid-hash uint32_t h_res = (uint32_t)cbrtf(hashmap_size); #pragma unroll for (uint32_t d = 0; d < D; d++) { index += (pos_grid[d] % h_res) * stride; stride *= h_res; } break; } return index * C + ch; } template __global__ void kernel_grid( const float * __restrict__ inputs, const float * __restrict__ grid, const int * __restrict__ offsets, float * outputs, const float beta, uint32_t B, uint32_t N, uint32_t L, uint32_t H, const bool calc_grad_inputs, float * dy_dx, uint32_t mode) { const uint32_t b = blockIdx.x * blockDim.x + threadIdx.x; if (b >= N) return; const uint32_t level = blockIdx.y; const uint32_t batch_id = blockIdx.z; const uint32_t batch_offset_grid = offsets[L] * batch_id; const uint32_t batch_offset_inputs = N * batch_id; // locate grid += ((uint32_t)offsets[level] + batch_offset_grid) * C; inputs += ( b + batch_offset_inputs) * D; outputs += ((b + batch_offset_inputs) * L + level) * C; const uint32_t hashmap_size = offsets[level + 1] - offsets[level]; // const float scale = exp2f(level) * H - 1.0f; const float scale = powf(beta, level) * H - 1.0f; const uint32_t resolution = (uint32_t)ceil(scale) + 1; // const float scale = powf(beta, level) * H; // const uint32_t resolution = (uint32_t)ceil(scale); // calculate coordinate float pos[D]; uint32_t pos_grid[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { pos[d] = inputs[d] * scale + 0.5f; pos_grid[d] = floorf(pos[d]); pos[d] -= (float)pos_grid[d]; } // printf("[b=%d, l=%d] pos=(%f, %f)+(%d, %d) scale=%f \n", b, level, pos[0], pos[1], pos_grid[0], pos_grid[1], scale); // interpolate #pragma unroll for (uint32_t idx = 0; idx < (1 << D); idx++) { float w = 1; uint32_t pos_grid_local[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { if ((idx & (1 << d)) == 0) { w *= 1 - pos[d]; pos_grid_local[d] = pos_grid[d]; } else { w *= pos[d]; pos_grid_local[d] = pos_grid[d] + 1; } } uint32_t index = get_grid_index(0, hashmap_size, resolution, pos_grid_local, mode); #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { outputs[ch] += w * grid[index + ch]; } //printf("[b=%d, l=%d] int %d, idx %d, w %f, val %f\n", b, level, idx, index, w, grid[index]); } // prepare dy_dx for calc_grad_inputs if (calc_grad_inputs) { // dy_dx += b * D * L * C + level * D * C; // B N L D C dy_dx += ((b + batch_offset_inputs) * L + level) * D * C; #pragma unroll for (uint32_t gd = 0; gd < D; gd++) { #pragma unroll for (uint32_t idx = 0; idx < (1 << (D - 1)); idx++) { float w = scale; uint32_t pos_grid_local[D]; #pragma unroll for (uint32_t nd = 0; nd < D - 1; nd++) { const uint32_t d = nd > gd ? nd + 1 : nd; if ((idx & (1 << nd)) == 0) { w *= 1 - pos[d]; pos_grid_local[d] = pos_grid[d]; } else { w *= pos[d]; pos_grid_local[d] = pos_grid[d] + 1; } } pos_grid_local[gd] = pos_grid[gd]; uint32_t index_left = get_grid_index(0, hashmap_size, resolution, pos_grid_local, mode); pos_grid_local[gd] = pos_grid[gd] + 1; uint32_t index_right = get_grid_index(0, hashmap_size, resolution, pos_grid_local, mode); #pragma unroll for (uint32_t ch = 0; ch < C; ch++) { dy_dx[gd * C + ch] += w * (grid[index_right + ch] - grid[index_left + ch]); } } } } } template __global__ void kernel_grid_backward( const float * __restrict__ grad, const float * __restrict__ inputs, const float * __restrict__ grid, const int * __restrict__ offsets, float * grad_grid, const float beta, uint32_t B, uint32_t N, uint32_t L, uint32_t H, uint32_t mode ) { const uint32_t b = (blockIdx.x * blockDim.x + threadIdx.x) * N_C / C; if (b >= N) return; const uint32_t level = blockIdx.y; const uint32_t ch = (blockIdx.x * blockDim.x + threadIdx.x) * N_C - b * C; const uint32_t batch_id = blockIdx.z; const uint32_t batch_offset_grid = offsets[L] * batch_id; const uint32_t batch_offset_inputs = N * batch_id; // locate grad_grid += ((uint32_t)offsets[level] + batch_offset_grid) * C; inputs += ( b + batch_offset_inputs) * D; grad += ((b + batch_offset_inputs) * L + level) * C + ch; const uint32_t hashmap_size = offsets[level + 1] - offsets[level]; // const float scale = exp2f(level) * H - 1.0f; const float scale = powf(beta, level) * H - 1.0f; const uint32_t resolution = (uint32_t)ceil(scale) + 1; // calculate coordinate float pos[D]; uint32_t pos_grid[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { pos[d] = inputs[d] * scale + 0.5f; pos_grid[d] = floorf(pos[d]); pos[d] -= (float)pos_grid[d]; } // interpolate #pragma unroll for (uint32_t idx = 0; idx < (1 << D); idx++) { float w = 1; uint32_t pos_grid_local[D]; #pragma unroll for (uint32_t d = 0; d < D; d++) { if ((idx & (1 << d)) == 0) { w *= 1 - pos[d]; pos_grid_local[d] = pos_grid[d]; } else { w *= pos[d]; pos_grid_local[d] = pos_grid[d] + 1; } } uint32_t index = get_grid_index(ch, hashmap_size, resolution, pos_grid_local, mode); #pragma unroll for (uint32_t c = 0; c < N_C; c++) { atomicAdd(&grad_grid[index + c], w * grad[c]); } } } template __global__ void kernel_input_backward( const float * __restrict__ grad, const float * __restrict__ dy_dx, float * grad_inputs, uint32_t B, uint32_t N, uint32_t L ) { const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x; if (t >= N * D) return; const uint32_t b = t / D; const uint32_t d = t - b * D; const uint32_t batch_id = blockIdx.y; const uint32_t batch_offset_inputs = N * batch_id; grad += (b + batch_offset_inputs) * L * C; dy_dx += (b + batch_offset_inputs) * L * D * C; grad_inputs += N * D * batch_id; # pragma unroll for (int l = 0; l < L; l++) { # pragma unroll for (int ch = 0; ch < C; ch++) { grad_inputs[t] += grad[l * C + ch] * dy_dx[l * D * C + d * C + ch]; } } } template void kernel_grid_wrapper(const float *inputs, const float *embeddings, const int *offsets, float *outputs, const float beta, const uint32_t B, const uint32_t N, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, const uint32_t mode) { static constexpr uint32_t N_THREAD = 512; const dim3 blocks_hashgrid = { div_round_up(N, N_THREAD), L, B}; switch (C) { case 1: kernel_grid<<>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; case 2: kernel_grid<<>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; case 4: kernel_grid<<>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; case 8: kernel_grid<<>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; case 32: kernel_grid<<>>(inputs, embeddings, offsets, outputs, beta, B, N, L, H, calc_grad_inputs, dy_dx, mode); break; default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, 8, 32"}; } } // inputs: [B, D], float, in [0, 1] // embeddings: [sO, C], float // offsets: [L + 1], uint32_t // outputs: [B, L * C], float // H: base resolution void hash_encode_forward_cuda(const float *inputs, const float *embeddings, const int *offsets, float *outputs, const float beta, const uint32_t B, const uint32_t N, const uint32_t D, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, const uint32_t mode) { switch (D) { case 2: kernel_grid_wrapper<2>(inputs, embeddings, offsets, outputs, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, mode); break; case 3: kernel_grid_wrapper<3>(inputs, embeddings, offsets, outputs, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, mode); break; default: throw std::runtime_error{"We only support 2D or 3D data for now."}; } } template void kernel_grid_backward_wrapper(const float *grad, const float *inputs, const float *embeddings, const int *offsets, float *grad_embeddings, const float beta, const uint32_t B, const uint32_t N, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, float *grad_inputs, const uint32_t mode) { static constexpr uint32_t N_THREAD = 256; const uint32_t N_C = std::min(2u, C); // n_features_per_thread const dim3 blocks_hashgrid = {div_round_up(N * C / N_C, N_THREAD), L, B}; // batch x sample x level const dim3 input_blocks_hashgrid = {div_round_up(N * D, N_THREAD), B, 1}; switch (C) { case 1: kernel_grid_backward<<>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); if (calc_grad_inputs) kernel_input_backward<<>>(grad, dy_dx, grad_inputs, B, N, L); break; case 2: kernel_grid_backward<<>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); if (calc_grad_inputs) kernel_input_backward<<>>(grad, dy_dx, grad_inputs, B, N, L); break; case 4: kernel_grid_backward<<>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); if (calc_grad_inputs) kernel_input_backward<<>>(grad, dy_dx, grad_inputs, B, N, L); break; case 8: kernel_grid_backward<<>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); if (calc_grad_inputs) kernel_input_backward<<>>(grad, dy_dx, grad_inputs, B, N, L); break; case 32: kernel_grid_backward<<>>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, L, H, mode); if (calc_grad_inputs) kernel_input_backward<<>>(grad, dy_dx, grad_inputs, B, N, L); break; default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."}; } } // grad: [B, L * C], float // inputs: [B, D], float, in [0, 1] // embeddings: [sO, C], float // offsets: [L + 1], uint32_t // grad_embeddings: [sO, C] // H: base resolution void hash_encode_backward_cuda(const float *grad, const float *inputs, const float *embeddings, const int *offsets, float *grad_embeddings, const float beta, const uint32_t B, const uint32_t N, const uint32_t D, const uint32_t C, const uint32_t L, const uint32_t H, const bool calc_grad_inputs, float *dy_dx, float *grad_inputs, const uint32_t mode) { switch (D) { case 2: kernel_grid_backward_wrapper<2>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, grad_inputs, mode); break; case 3: kernel_grid_backward_wrapper<3>(grad, inputs, embeddings, offsets, grad_embeddings, beta, B, N, C, L, H, calc_grad_inputs, dy_dx, grad_inputs, mode); break; default: throw std::runtime_error{"We only support 2D or 3D data for now."}; } }