File size: 10,454 Bytes
0816d86
68ae2ac
 
 
 
 
 
0816d86
68ae2ac
 
 
 
 
 
 
0816d86
68ae2ac
 
 
 
0816d86
 
68ae2ac
 
 
 
 
 
 
 
 
0816d86
68ae2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
0816d86
 
68ae2ac
 
 
 
 
 
 
 
 
0816d86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ae2ac
 
 
 
0816d86
68ae2ac
0816d86
 
 
 
 
68ae2ac
0816d86
 
68ae2ac
 
0816d86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ae2ac
0816d86
 
 
68ae2ac
0816d86
68ae2ac
 
 
 
 
0816d86
68ae2ac
 
 
 
 
 
 
 
0816d86
68ae2ac
 
 
0816d86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ae2ac
0816d86
 
 
 
 
 
68ae2ac
0816d86
68ae2ac
 
0816d86
 
 
 
68ae2ac
 
0816d86
68ae2ac
 
0816d86
 
 
68ae2ac
0816d86
 
68ae2ac
0816d86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ae2ac
 
 
 
 
0816d86
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# final one
import torch
import gradio as gr
import os
import numpy as np
import trimesh
import mcubes
import imageio
from torchvision.utils import save_image
from PIL import Image
from transformers import AutoModel, AutoConfig
from rembg import remove, new_session
from functools import partial
from kiui.op import recenter
import kiui
from gradio_litmodel3d import LitModel3D

# we load the pre-trained model from HF
class LRMGeneratorWrapper:
    def __init__(self):
        self.config = AutoConfig.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
        self.model = AutoModel.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model.to(self.device)
        self.model.eval()

    def forward(self, image, camera):
        return self.model(image, camera)

model_wrapper = LRMGeneratorWrapper()

# we preprocess the input image
def preprocess_image(image, source_size):
    session = new_session("isnet-general-use")
    rembg_remove = partial(remove, session=session)
    image = np.array(image)
    image = rembg_remove(image)
    mask = rembg_remove(image, only_mask=True)
    image = recenter(image, mask, border_ratio=0.20)
    image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
    if image.shape[1] == 4:
        image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
    image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
    image = torch.clamp(image, 0, 1)
    return image

# Copied from https://github.com/facebookresearch/vfusion3d/blob/main/lrm/cam_utils.py and
# https://github.com/facebookresearch/vfusion3d/blob/main/lrm/inferrer.py
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
    fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
    cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
    width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
    fx, fy = fx / width, fy / height
    cx, cy = cx / width, cy / height
    return fx, fy, cx, cy

def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
    fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
    return torch.cat([
        RT.reshape(-1, 12),
        fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
    ], dim=-1)

def _default_intrinsics():
    fx = fy = 384
    cx = cy = 256
    w = h = 512
    intrinsics = torch.tensor([
        [fx, fy],
        [cx, cy],
        [w, h],
    ], dtype=torch.float32)
    return intrinsics

def _default_source_camera(batch_size: int = 1):
    canonical_camera_extrinsics = torch.tensor([[
        [0, 0, 1, 1],
        [1, 0, 0, 0],
        [0, 1, 0, 0],
    ]], dtype=torch.float32)
    canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
    source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
    return source_camera.repeat(batch_size, 1)

def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
    """
    camera_position: (M, 3)
    look_at: (3)
    up_world: (3)
    return: (M, 3, 4)
    """
    # by default, looking at the origin and world up is pos-z
    if look_at is None:
        look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
    if up_world is None:
        up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
    look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
    up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)

    z_axis = camera_position - look_at
    z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
    x_axis = torch.cross(up_world, z_axis)
    x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
    y_axis = torch.cross(z_axis, x_axis)
    y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
    extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
    return extrinsics

def compose_extrinsic_RT(RT: torch.Tensor):
    """
    Compose the standard form extrinsic matrix from RT.
    Batched I/O.
    """
    return torch.cat([
        RT,
        torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
        ], dim=1)

def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
    """
    RT: (N, 3, 4)
    intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
    """
    E = compose_extrinsic_RT(RT)
    fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
    I = torch.stack([
        torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
        torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
        torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
    ], dim=1)
    return torch.cat([
        E.reshape(-1, 16),
        I.reshape(-1, 9),
    ], dim=-1)

def _default_render_cameras(batch_size: int = 1):
    M = 160
    radius = 1.5
    elevation = 0
    camera_positions = []
    rand_theta = np.random.uniform(0, np.pi/180)
    elevation = np.radians(elevation)
    for i in range(M):
        theta = 2 * np.pi * i / M + rand_theta
        x = radius * np.cos(theta) * np.cos(elevation)
        y = radius * np.sin(theta) * np.cos(elevation)
        z = radius * np.sin(elevation)
        camera_positions.append([x, y, z])
    camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
    extrinsics = _center_looking_at_camera_pose(camera_positions)

    render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
    render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics)
    return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)

def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=True, fps=30):
    image = preprocess_image(image, source_size).to(model_wrapper.device)
    source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)

    with torch.no_grad():
        planes = model_wrapper.forward(image, source_camera)

        if export_mesh:
            grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
            vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
            vtx = vtx / (mesh_size - 1) * 2 - 1
            vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0)
            vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
            vtx_colors = (vtx_colors * 255).astype(np.uint8)
            mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)

            mesh_path = "awesome_mesh.obj"
            mesh.export(mesh_path, 'obj')

            return mesh_path, mesh_path

        if export_video:
            render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device)
            frames = []
            chunk_size = 2
            for i in range(0, render_cameras.shape[1], chunk_size):
                frame_chunk = model_wrapper.model.synthesizer(
                    planes,
                    render_cameras[:, i:i + chunk_size],
                    render_size,
                    render_size,
                    0,
                    0
                )
                frames.append(frame_chunk['images_rgb'])

            frames = torch.cat(frames, dim=1)
            frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)

            video_path = "awesome_video.mp4"
            imageio.mimwrite(video_path, frames, fps=fps)

            return None, video_path

    return None, None

def step_1_generate_obj(image):
    mesh_path, _ = generate_mesh(image, export_mesh=True)
    return mesh_path, mesh_path

def step_2_generate_video(image):
    _, video_path = generate_mesh(image, export_video=True)
    return video_path

def step_3_display_3d_model(mesh_file):
    return mesh_file

# set up the example files from assets folder, we limit to 10
example_folder = "assets"
examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg'))][:10]

with gr.Blocks() as demo:
    with gr.Row():

        with gr.Column():
            img_input = gr.Image(type="pil", label="Input Image")
            examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=3)
            generate_mesh_button = gr.Button("Generate and Download Mesh")
            generate_video_button = gr.Button("Generate and Download Video")
            obj_file_output = gr.File(label="Download .obj File")
            video_file_output = gr.File(label="Download Video")

        with gr.Column():
            model_output = LitModel3D(
                clear_color=[0.1, 0.1, 0.1, 0],  # can adjust background color for better contrast
                label="3D Model Visualization",
                scale=1.0,
                tonemapping="aces",  # can use aces tonemapping for more realistic lighting
                exposure=1.0,        # can adjust exposure to control brightness
                contrast=1.1,        # can slightly increase contrast for better depth
                camera_position=(0, 0, 2),  # will set initial camera position to center the model
                zoom_speed=0.5,      # will adjust zoom speed for better control
                pan_speed=0.5,       # will adjust pan speed for better control
                interactive=True     # this allow users to interact with the model
            )
            
        
    # clear outputs
    def clear_model_viewer():
        """Reset the Model3D component before loading a new model."""
        return gr.update(value=None)
    
    def generate_and_visualize(image):
        mesh_path = step_1_generate_obj(image)
        return mesh_path, mesh_path

    # first we clear the existing 3D model
    img_input.change(clear_model_viewer, inputs=None, outputs=model_output)

    # then, generate the mesh and video
    generate_mesh_button.click(step_1_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
    generate_video_button.click(step_2_generate_video, inputs=img_input, outputs=video_file_output)

demo.launch(debug=True)