File size: 9,467 Bytes
ce00289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from dataclasses import dataclass
from typing import List, Optional

import torch
import transformer_lens
import transformers
from fancy_einsum import einsum
from jaxtyping import Float, Int
from typeguard import typechecked
import streamlit as st

from llm_transparency_tool.models.transparent_llm import ModelInfo, TransparentLlm


@dataclass
class _RunInfo:
    tokens: Int[torch.Tensor, "batch pos"]
    logits: Float[torch.Tensor, "batch pos d_vocab"]
    cache: transformer_lens.ActivationCache


@st.cache_resource(
    max_entries=1,
    show_spinner=True,
    hash_funcs={
        transformers.PreTrainedModel: id,
        transformers.PreTrainedTokenizer: id
    }
)
def load_hooked_transformer(
    model_name: str,
    hf_model: Optional[transformers.PreTrainedModel] = None,
    tlens_device: str = "cuda",
    dtype: torch.dtype = torch.float32,
):
    # if tlens_device == "cuda":
    #     n_devices = torch.cuda.device_count()
    # else:
    #     n_devices = 1
    tlens_model = transformer_lens.HookedTransformer.from_pretrained(
        model_name,
        hf_model=hf_model,
        fold_ln=False,  # Keep layer norm where it is.
        center_writing_weights=False,
        center_unembed=False,
        device=tlens_device,
        # n_devices=n_devices,
        dtype=dtype,
    )
    tlens_model.eval()
    return tlens_model


# TODO(igortufanov): If we want to scale the app to multiple users, we need more careful
# thread-safe implementation. The simplest option could be to wrap the existing methods
# in mutexes.
class TransformerLensTransparentLlm(TransparentLlm):
    """
    Implementation of Transparent LLM based on transformer lens.

    Args:
    - model_name: The official name of the model from HuggingFace. Even if the model was
        patched or loaded locally, the name should still be official because that's how
        transformer_lens treats the model.
    - hf_model: The language model as a HuggingFace class.
    - tokenizer,
    - device: "gpu" or "cpu"
    """

    def __init__(
        self,
        model_name: str,
        hf_model: Optional[transformers.PreTrainedModel] = None,
        tokenizer: Optional[transformers.PreTrainedTokenizer] = None,
        device: str = "gpu",
        dtype: torch.dtype = torch.float32,
    ):
        if device == "gpu":
            self.device = "cuda"
            if not torch.cuda.is_available():
                RuntimeError("Asked to run on gpu, but torch couldn't find cuda")
        elif device == "cpu":
            self.device = "cpu"
        else:
            raise RuntimeError(f"Specified device {device} is not a valid option")

        self.dtype = dtype
        self.hf_tokenizer = tokenizer
        self.hf_model = hf_model

        # self._model = tlens_model
        self._model_name = model_name
        self._prepend_bos = True
        self._last_run = None
        self._run_exception = RuntimeError(
            "Tried to use the model output before calling the `run` method"
        )

    def copy(self):
        import copy
        return copy.copy(self)

    @property
    def _model(self):
        tlens_model = load_hooked_transformer(
            self._model_name,
            hf_model=self.hf_model,
            tlens_device=self.device,
            dtype=self.dtype,
        )

        if self.hf_tokenizer is not None:
            tlens_model.set_tokenizer(self.hf_tokenizer, default_padding_side="left")

        tlens_model.set_use_attn_result(True)
        tlens_model.set_use_attn_in(False)
        tlens_model.set_use_split_qkv_input(False)

        return tlens_model

    def model_info(self) -> ModelInfo:
        cfg = self._model.cfg
        return ModelInfo(
            name=self._model_name,
            n_params_estimate=cfg.n_params,
            n_layers=cfg.n_layers,
            n_heads=cfg.n_heads,
            d_model=cfg.d_model,
            d_vocab=cfg.d_vocab,
        )

    @torch.no_grad()
    def run(self, sentences: List[str]) -> None:
        tokens = self._model.to_tokens(sentences, prepend_bos=self._prepend_bos)
        logits, cache = self._model.run_with_cache(tokens)

        self._last_run = _RunInfo(
            tokens=tokens,
            logits=logits,
            cache=cache,
        )

    def batch_size(self) -> int:
        if not self._last_run:
            raise self._run_exception
        return self._last_run.logits.shape[0]

    @typechecked
    def tokens(self) -> Int[torch.Tensor, "batch pos"]:
        if not self._last_run:
            raise self._run_exception
        return self._last_run.tokens

    @typechecked
    def tokens_to_strings(self, tokens: Int[torch.Tensor, "pos"]) -> List[str]:
        return self._model.to_str_tokens(tokens)

    @typechecked
    def logits(self) -> Float[torch.Tensor, "batch pos d_vocab"]:
        if not self._last_run:
            raise self._run_exception
        return self._last_run.logits

    @torch.no_grad()
    @typechecked
    def unembed(
        self,
        t: Float[torch.Tensor, "d_model"],
        normalize: bool,
    ) -> Float[torch.Tensor, "vocab"]:
        # t: [d_model] -> [batch, pos, d_model]
        tdim = t.unsqueeze(0).unsqueeze(0)
        if normalize:
            normalized = self._model.ln_final(tdim)
            result = self._model.unembed(normalized)
        else:
            result = self._model.unembed(tdim)
        return result[0][0]

    def _get_block(self, layer: int, block_name: str) -> str:
        if not self._last_run:
            raise self._run_exception
        return self._last_run.cache[f"blocks.{layer}.{block_name}"]

    # ================= Methods related to the residual stream =================

    @typechecked
    def residual_in(self, layer: int) -> Float[torch.Tensor, "batch pos d_model"]:
        if not self._last_run:
            raise self._run_exception
        return self._get_block(layer, "hook_resid_pre")

    @typechecked
    def residual_after_attn(
        self, layer: int
    ) -> Float[torch.Tensor, "batch pos d_model"]:
        if not self._last_run:
            raise self._run_exception
        return self._get_block(layer, "hook_resid_mid")

    @typechecked
    def residual_out(self, layer: int) -> Float[torch.Tensor, "batch pos d_model"]:
        if not self._last_run:
            raise self._run_exception
        return self._get_block(layer, "hook_resid_post")

    # ================ Methods related to the feed-forward layer ===============

    @typechecked
    def ffn_out(self, layer: int) -> Float[torch.Tensor, "batch pos d_model"]:
        if not self._last_run:
            raise self._run_exception
        return self._get_block(layer, "hook_mlp_out")

    @torch.no_grad()
    @typechecked
    def decomposed_ffn_out(
        self,
        batch_i: int,
        layer: int,
        pos: int,
    ) -> Float[torch.Tensor, "hidden d_model"]:
        # Take activations right before they're multiplied by W_out, i.e. non-linearity
        # and layer norm are already applied.
        processed_activations = self._get_block(layer, "mlp.hook_post")[batch_i][pos]
        return torch.mul(processed_activations.unsqueeze(-1), self._model.W_out[layer])

    @typechecked
    def neuron_activations(
        self,
        batch_i: int,
        layer: int,
        pos: int,
    ) -> Float[torch.Tensor, "hidden"]:
        return self._get_block(layer, "mlp.hook_pre")[batch_i][pos]

    @typechecked
    def neuron_output(
        self,
        layer: int,
        neuron: int,
    ) -> Float[torch.Tensor, "d_model"]:
        return self._model.W_out[layer][neuron]

    # ==================== Methods related to the attention ====================

    @typechecked
    def attention_matrix(
        self, batch_i: int, layer: int, head: int
    ) -> Float[torch.Tensor, "query_pos key_pos"]:
        return self._get_block(layer, "attn.hook_pattern")[batch_i][head]

    @typechecked
    def attention_output_per_head(
        self,
        batch_i: int,
        layer: int,
        pos: int,
        head: int,
    ) -> Float[torch.Tensor, "d_model"]:
        return self._get_block(layer, "attn.hook_result")[batch_i][pos][head]

    @typechecked
    def attention_output(
        self,
        batch_i: int,
        layer: int,
        pos: int,
    ) -> Float[torch.Tensor, "d_model"]:
        return self._get_block(layer, "hook_attn_out")[batch_i][pos]

    @torch.no_grad()
    @typechecked
    def decomposed_attn(
        self, batch_i: int, layer: int
    ) -> Float[torch.Tensor, "pos key_pos head d_model"]:
        if not self._last_run:
            raise self._run_exception
        hook_v = self._get_block(layer, "attn.hook_v")[batch_i]
        b_v = self._model.b_V[layer]
        v = hook_v + b_v
        pattern = self._get_block(layer, "attn.hook_pattern")[batch_i].to(v.dtype)
        z = einsum(
            "key_pos head d_head, "
            "head query_pos key_pos -> "
            "query_pos key_pos head d_head",
            v,
            pattern,
        )
        decomposed_attn = einsum(
            "pos key_pos head d_head, "
            "head d_head d_model -> "
            "pos key_pos head d_model",
            z,
            self._model.W_O[layer],
        )
        return decomposed_attn