File size: 6,274 Bytes
5a766fd
 
 
 
 
c1e0588
 
a7361bc
5cae5d7
c1e0588
 
5a766fd
366edf8
 
 
 
 
 
 
 
 
 
 
 
 
c1e0588
 
 
 
 
 
 
 
 
 
 
366edf8
fd69a21
366edf8
 
 
 
 
 
 
c1e0588
 
fd69a21
366edf8
c1e0588
 
366edf8
c1e0588
 
 
 
366edf8
7fb1760
c1e0588
7fb1760
c1e0588
 
 
366edf8
c1e0588
 
 
 
 
1727d3b
366edf8
 
 
c1e0588
1727d3b
c1e0588
1727d3b
366edf8
 
1727d3b
366edf8
c1e0588
1727d3b
366edf8
 
 
 
1727d3b
c1e0588
 
fd69a21
c1e0588
 
 
 
 
fd69a21
c1e0588
 
 
 
 
 
 
 
 
 
 
 
 
 
366edf8
fd69a21
c1e0588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd69a21
 
c1e0588
 
fd69a21
 
 
c1e0588
 
fd69a21
 
 
c1e0588
fd69a21
 
c1e0588
fd69a21
1727d3b
 
366edf8
1727d3b
5a766fd
 
5cae5d7
 
366edf8
 
c1e0588
366edf8
 
 
 
 
 
1727d3b
5a766fd
366edf8
 
c1e0588
366edf8
 
 
1727d3b
 
c1e0588
1727d3b
 
 
c1e0588
1727d3b
 
c1e0588
 
1727d3b
c1e0588
 
 
 
 
fd69a21
 
 
 
 
 
366edf8
c1e0588
1727d3b
 
 
 
fd69a21
1727d3b
c1e0588
 
1727d3b
c1e0588
fd69a21
 
 
 
c1e0588
1727d3b
5a766fd
c1e0588
5a766fd
5cae5d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import annotations

import gradio as gr
import numpy as np

import asyncio
from simuleval_transcoder import SimulevalTranscoder, logger

import time
from simuleval.utils.agent import build_system_from_dir
import torch


language_code_to_name = {
    "cmn": "Mandarin Chinese",
    "deu": "German",
    "eng": "English",
    "fra": "French",
    "spa": "Spanish",
}
S2ST_TARGET_LANGUAGE_NAMES = language_code_to_name.values()
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}

DEFAULT_TARGET_LANGUAGE = "English"


def build_agent(model_path, config_name=None):
    agent = build_system_from_dir(
        model_path, config_name=config_name,
    )
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    agent.to(device, fp16=True)

    return agent

agent = build_agent("models", "vad_s2st_sc_24khz_main.yaml")
transcoder = SimulevalTranscoder(
    agent,
    sample_rate=48_000,
    debug=False,
    buffer_limit=1,
)

def start_recording():
    logger.debug(f"start_recording: starting transcoder")
    transcoder.reset_states()
    transcoder.close = False
    transcoder.start()

def stop_recording():
    transcoder.close = True

class MyState:
    def __init__(self):
        self.queue = asyncio.Queue()
        self.close = False


s = MyState()

def process_incoming_bytes(audio):
    logger.debug(f"process_bytes: incoming audio")
    sample_rate, data = audio
    transcoder.process_incoming_bytes(data.tobytes(), 'eng', sample_rate)
    s.queue.put_nowait(audio)



def get_buffered_output():

    speech_and_text_output =  transcoder.get_buffered_output()
    if speech_and_text_output is None:
        logger.debug("No output from transcoder.get_buffered_output()")
        return None, None, None

    logger.debug(f"We DID get output from the transcoder!")

    text = None
    speech = None

    if speech_and_text_output.speech_samples:
        speech = (speech_and_text_output.speech_sample_rate, speech_and_text_output.speech_samples)

    if speech_and_text_output.text:
        text = speech_and_text_output.text
        if speech_and_text_output.final:
            text += "\n"

    return speech, text, speech_and_text_output.final

from scipy.io.wavfile import write as scipy_write
def streaming_input_callback():
    final = False
    max_wait_s = 15
    wait_s = 0
    translated_text_state = ""
    sample_rate = 24000
    while not transcoder.close:
        translated_wav_segment, translated_text, final = get_buffered_output()

        if translated_wav_segment is None and translated_text is None:
            time.sleep(0.3)
            wait_s += 0.3
            if wait_s >= max_wait_s:
                transcoder.close = True
            continue
        wait_s = 0
        if translated_wav_segment is not None:
            sample_rate, audio_bytes = translated_wav_segment
            print("output sample rate", sample_rate)
            translated_wav_segment = sample_rate, np.array(audio_bytes)
        else:
            translated_wav_segment = sample_rate, np.empty(0, dtype=np.int16)

        if translated_text is not None:
            translated_text_state += " | " + str(translated_text)

        stream_output_text = translated_text_state
        if translated_text is not None:
            print("translated:", translated_text_state)
        yield [
            translated_wav_segment,
            stream_output_text,
            translated_text_state,
        ]


def streaming_callback_dummy():
    i = 0
    out_text = ""
    while not transcoder.close:
        if s.queue.empty():
            yield (
                (48000, np.empty(0, dtype=np.int16)), out_text, out_text
            )
            time.sleep(0.3)
        else:
            i += 1
            out_text += " | " + str(i)
            print(out_text)
            audio = s.queue.get_nowait()
            if i == 0:
                print(audio[0], type(audio[1]))
            s.queue.task_done()
            yield audio, out_text, out_text

def clear():
    logger.debug(f"Clearing State")
    return [bytes(), ""]


def blocks():
    with gr.Blocks() as demo:

        with gr.Row():
            # TODO: add target language switching
            target_language = gr.Dropdown(
                label="Target language",
                choices=S2ST_TARGET_LANGUAGE_NAMES,
                value=DEFAULT_TARGET_LANGUAGE,
            )

        translated_text_state = gr.State("")

        input_audio = gr.Audio(
            label="Input Audio",
            sources=["microphone"],
            streaming=True,
        )

        output_translation_segment = gr.Audio(
            label="Translated audio segment",
            autoplay=True,
            streaming=True,
        )

        # Output text segment
        stream_output_text = gr.Textbox(label="Translated text")

        input_audio.clear(
            clear, None, [output_translation_segment, translated_text_state]
        )
        input_audio.start_recording(
            clear, None, [output_translation_segment, translated_text_state]
        ).then(
            start_recording
        ).then(
            # TODO: streaming speech autoplay works fine with streaming_callback_dummy,
            # but speech output from streaming_input_callback has a huge delay
            # when comparing print/debugging logs vs. output speech
            # TODO: text output works fine with one output, but is not
            # updating when output is both text + speech
            # streaming_callback_dummy,
            streaming_input_callback,
            None,
            [
                output_translation_segment,
                stream_output_text,
                translated_text_state,
            ]
        )
        input_audio.stop_recording(
            stop_recording
        )
        input_audio.stream(
            # TODO: *only when streaming speech output* about half the time 
            # there is some race condition in gradio where process_incoming_bytes
            # stops getting called once the first speech chunk is yield-ed 
            # in streaming_input_callback (or streaming_callback_dummy)
            process_incoming_bytes, [input_audio], None
        )

    demo.launch(server_port=6010)

blocks()