vggsfm / app.py
nikkar's picture
small description fixes
89d2ada
raw
history blame
10.4 kB
import os
import cv2
import torch
import numpy as np
import gradio as gr
import trimesh
import sys
import os
sys.path.append('vggsfm_code/')
import shutil
from datetime import datetime
from vggsfm_code.hf_demo import demo_fn
from omegaconf import DictConfig, OmegaConf
from viz_utils.viz_fn import add_camera
import glob
#
from scipy.spatial.transform import Rotation
import PIL
import gc
# import spaces
# @spaces.GPU
def vggsfm_demo(
input_video,
input_image,
query_frame_num,
max_query_pts=4096,
):
gc.collect()
torch.cuda.empty_cache()
if input_video is not None:
if not isinstance(input_video, str):
input_video = input_video["video"]["path"]
cfg_file = "vggsfm_code/cfgs/demo.yaml"
cfg = OmegaConf.load(cfg_file)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
max_input_image = 25
target_dir = f"input_images_{timestamp}"
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(target_dir)
target_dir_images = target_dir + "/images"
os.makedirs(target_dir_images)
if input_image is not None:
if len(input_image)<3:
return None, "Please input at least three frames"
input_image = sorted(input_image)
input_image = input_image[:max_input_image]
# Copy files to the new directory
for file_name in input_image:
shutil.copy(file_name, target_dir_images)
elif input_video is not None:
vs = cv2.VideoCapture(input_video)
fps = vs.get(cv2.CAP_PROP_FPS)
frame_rate = 1
frame_interval = int(fps * frame_rate)
video_frame_num = 0
count = 0
while video_frame_num<=max_input_image:
(gotit, frame) = vs.read()
count +=1
if not gotit:
break
if count % frame_interval == 0:
cv2.imwrite(target_dir_images+"/"+f"{video_frame_num:06}.png", frame)
video_frame_num+=1
if video_frame_num<3:
return None, "Please input at least three frames"
else:
return None, "Input format incorrect"
cfg.query_frame_num = query_frame_num
cfg.max_query_pts = max_query_pts
print(f"Files have been copied to {target_dir_images}")
cfg.SCENE_DIR = target_dir
# try:
predictions = demo_fn(cfg)
# except:
# return None, "Something seems to be incorrect. Please verify that your inputs are formatted correctly. If the issue persists, kindly create a GitHub issue for further assistance."
glbscene = vggsfm_predictions_to_glb(predictions)
glbfile = target_dir + "/glbscene.glb"
glbscene.export(file_obj=glbfile)
del predictions
gc.collect()
torch.cuda.empty_cache()
print(input_image)
print(input_video)
return glbfile, "Success"
def vggsfm_predictions_to_glb(predictions):
# learned from https://github.com/naver/dust3r/blob/main/dust3r/viz.py
points3D = predictions["points3D"].cpu().numpy()
points3D_rgb = predictions["points3D_rgb"].cpu().numpy()
points3D_rgb = (points3D_rgb*255).astype(np.uint8)
extrinsics_opencv = predictions["extrinsics_opencv"].cpu().numpy()
intrinsics_opencv = predictions["intrinsics_opencv"].cpu().numpy()
raw_image_paths = predictions["raw_image_paths"]
images = predictions["images"].permute(0,2,3,1).cpu().numpy()
images = (images*255).astype(np.uint8)
glbscene = trimesh.Scene()
point_cloud = trimesh.PointCloud(points3D, colors=points3D_rgb)
glbscene.add_geometry(point_cloud)
camera_edge_colors = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (255, 204, 0), (0, 204, 204),
(128, 255, 255), (255, 128, 255), (255, 255, 128), (0, 0, 0), (128, 128, 128)]
frame_num = len(extrinsics_opencv)
extrinsics_opencv_4x4 = np.zeros((frame_num, 4, 4))
extrinsics_opencv_4x4[:, :3, :4] = extrinsics_opencv
extrinsics_opencv_4x4[:, 3, 3] = 1
for idx in range(frame_num):
cam_from_world = extrinsics_opencv_4x4[idx]
cam_to_world = np.linalg.inv(cam_from_world)
cur_cam_color = camera_edge_colors[idx % len(camera_edge_colors)]
cur_focal = intrinsics_opencv[idx, 0, 0]
add_camera(glbscene, cam_to_world, cur_cam_color, image=None, imsize=(1024,1024),
focal=None,screen_width=0.35)
opengl_mat = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
glbscene.apply_transform(np.linalg.inv(np.linalg.inv(extrinsics_opencv_4x4[0]) @ opengl_mat @ rot))
# Calculate the bounding box center and apply the translation
bounding_box = glbscene.bounds
center = (bounding_box[0] + bounding_box[1]) / 2
translation = np.eye(4)
translation[:3, 3] = -center
glbscene.apply_transform(translation)
# glbfile = "glbscene.glb"
# glbscene.export(file_obj=glbfile)
return glbscene
apple_video = "vggsfm_code/examples/videos/apple_video.mp4"
# os.path.join(os.path.dirname(__file__), "apple_video.mp4")
british_museum_video = "vggsfm_code/examples/videos/british_museum_video.mp4"
# os.path.join(os.path.dirname(__file__), "british_museum_video.mp4")
cake_video = "vggsfm_code/examples/videos/cake_video.mp4"
bonsai_video = "vggsfm_code/examples/videos/bonsai_video.mp4"
# os.path.join(os.path.dirname(__file__), "cake_video.mp4")
apple_images = glob.glob(f'vggsfm_code/examples/apple/images/*')
bonsai_images = glob.glob(f'vggsfm_code/examples/bonsai/images/*')
cake_images = glob.glob(f'vggsfm_code/examples/cake/images/*')
british_museum_images = glob.glob(f'vggsfm_code/examples/british_museum/images/*')
with gr.Blocks() as demo:
gr.Markdown("# 🏛️ VGGSfM: Visual Geometry Grounded Deep Structure From Motion")
gr.Markdown("""
<div style="text-align: left;">
<p>Welcome to <a href="https://vggsfm.github.io/" target="_blank">VGGSfM</a> demo!
This space demonstrates 3D reconstruction from input image frames. </p>
<p>To get started quickly, you can click on our <strong> examples (the bottom of the page) </strong>. If you want to reconstruct your own data, simply: </p>
<ul style="display: inline-block; text-align: left;">
<li>upload images (.jpg, .png, etc.), or </li>
<li>upload a video (.mp4, .mov, etc.) </li>
</ul>
<p>If both images and videos are uploaded, the demo will only reconstruct the uploaded images. By default, we extract <strong> 1 image frame per second from the input video </strong>. To prevent crashes on the Hugging Face space, we currently limit reconstruction to the first 25 image frames. </p>
<p>SfM methods are designed for <strong> rigid/static reconstruction </strong>. When dealing with dynamic/moving inputs, these methods may still work by focusing on the rigid parts of the scene. However, to ensure high-quality results, it is better to minimize the presence of moving objects in the input data. </p>
<p>The reconstruction should typically take <strong> up to 90 seconds </strong>. If it takes longer, the input data is likely not well-conditioned or the query images/points are set too high. </p>
<p>If you meet any problem, feel free to create an issue in our <a href="https://github.com/facebookresearch/vggsfm" target="_blank">GitHub Repo</a> ⭐</p>
<p>(Please note that running reconstruction on Hugging Face space is slower than on a local machine.) </p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_video = gr.Video(label="Input video", interactive=True)
input_images = gr.File(file_count="multiple", label="Input Images", interactive=True)
num_query_images = gr.Slider(minimum=1, maximum=10, step=1, value=4, label="Number of query images (key frames)",
info="More query images usually lead to better reconstruction at lower speeds. If the viewpoint differences between your images are minimal, you can set this value to 1. ")
num_query_points = gr.Slider(minimum=600, maximum=6000, step=1, value=2048, label="Number of query points",
info="More query points usually lead to denser reconstruction at lower speeds.")
with gr.Column(scale=3):
reconstruction_output = gr.Model3D(label="Reconstruction", height=520)
log_output = gr.Textbox(label="Log")
with gr.Row():
submit_btn = gr.Button("Reconstruct", scale=1)
# submit_btn = gr.Button("Reconstruct", scale=1, elem_attributes={"style": "background-color: blue; color: white;"})
clear_btn = gr.ClearButton([input_video, input_images, num_query_images, num_query_points, reconstruction_output, log_output], scale=1)
examples = [
[british_museum_video, british_museum_images, 1, 4096],
[apple_video, apple_images, 6, 2048],
[bonsai_video, bonsai_images, 3, 2048],
# [cake_video, cake_images, 3, 2048],
]
gr.Examples(examples=examples,
inputs=[input_video, input_images, num_query_images, num_query_points],
outputs=[reconstruction_output, log_output], # Provide outputs
fn=vggsfm_demo, # Provide the function
cache_examples=True,
)
submit_btn.click(
vggsfm_demo,
[input_video, input_images, num_query_images, num_query_points],
[reconstruction_output, log_output],
concurrency_limit=1
)
# demo.launch(debug=True, share=True)
demo.queue(max_size=20).launch(show_error=True, share=True)
# demo.queue(max_size=20, concurrency_count=1).launch(debug=True, share=True)
########################################################################################################################
# else:
# import glob
# files = glob.glob(f'vggsfm_code/examples/cake/images/*', recursive=True)
# vggsfm_demo(files, None, None)
# demo.queue(max_size=20, concurrency_count=1).launch(debug=True, share=True)