File size: 1,714 Bytes
a2a7aa3
 
 
 
 
 
 
 
ca58299
a2a7aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723e08
a2a7aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723e08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
import pandas as pd
import matplotlib.pyplot as plt

# Load the trained model
model_path = "pokemon_model_fahrnphi_transferlearning.keras"
model = tf.keras.models.load_model(model_path)

# Define the core prediction function
def predict_pokemon(image):
    # Preprocess image
    image = image.resize((150, 150))  # Resize the image to 150x150
    image = image.convert('RGB')  # Ensure image has 3 channels
    image = np.array(image)
    image = np.expand_dims(image, axis=0)  # Add batch dimension
    
    # Predict
    prediction = model.predict(image)
    
    # Apply softmax to get probabilities for each class
    probabilities = tf.nn.softmax(prediction, axis=1)
    
    # Map probabilities to Pokemon classes
    class_names = ['Charizard', 'Lapras', 'Machamp']
    probabilities_dict = {pokemon_class: round(float(probability), 2) for pokemon_class, probability in zip(class_names, probabilities.numpy()[0])}
    
    return probabilities_dict

# Streamlit interface
st.title("Pokemon Classifier")
st.write("A simple MLP classification model for image classification using a pretrained model.")

# Upload image
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"])

if uploaded_image is not None:
    image = Image.open(uploaded_image)
    st.image(image, caption='Uploaded Image.', use_column_width=True)
    st.write("")
    st.write("Classifying...")
    
    predictions = predict_pokemon(image)
    
    # Display predictions as a DataFrame
    st.write("### Prediction Probabilities")
    df = pd.DataFrame(predictions.items(), columns=["Pokemon", "Probability"])
    st.dataframe(df)