import streamlit as st import tensorflow as tf import numpy as np from PIL import Image import pandas as pd import matplotlib.pyplot as plt # Load the trained model model_path = "pokemon_model_fahrnphi_transferlearning.keras" model = tf.keras.models.load_model(model_path) # Define the core prediction function def predict_pokemon(image): # Preprocess image image = image.resize((150, 150)) # Resize the image to 150x150 image = image.convert('RGB') # Ensure image has 3 channels image = np.array(image) image = np.expand_dims(image, axis=0) # Add batch dimension # Predict prediction = model.predict(image) # Apply softmax to get probabilities for each class probabilities = tf.nn.softmax(prediction, axis=1) # Map probabilities to Pokemon classes class_names = ['Charizard', 'Lapras', 'Machamp'] probabilities_dict = {pokemon_class: round(float(probability), 2) for pokemon_class, probability in zip(class_names, probabilities.numpy()[0])} return probabilities_dict # Streamlit interface st.title("Pokemon Classifier") st.write("A simple MLP classification model for image classification using a pretrained model.") # Upload image uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"]) if uploaded_image is not None: image = Image.open(uploaded_image) st.image(image, caption='Uploaded Image.', use_column_width=True) st.write("") st.write("Classifying...") predictions = predict_pokemon(image) # Display predictions as a DataFrame st.write("### Prediction Probabilities") df = pd.DataFrame(predictions.items(), columns=["Pokemon", "Probability"]) st.dataframe(df) # Display predictions as a pie chart st.write("### Prediction Chart") fig, ax = plt.subplots() ax.pie(df["Probability"], labels=df["Pokemon"], autopct='%1.1f%%', colors=plt.cm.Paired.colors) ax.set_title('Prediction Probabilities') st.pyplot(fig)