Spaces:
Running
Running
File size: 8,816 Bytes
a1ba240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import streamlit as st
import pandas as pd
import numpy as np
import re
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
from pprint import pprint
import pickle
import streamlit.components.v1 as components
from io import StringIO
from nltk.stem.snowball import SnowballStemmer
import csv
import sys
#===config===
st.set_page_config(
page_title="Coconut",
page_icon="π₯₯",
layout="wide",
initial_sidebar_state="collapsed"
)
hide_streamlit_style = """
<style>
#MainMenu
{visibility: hidden;}
footer {visibility: hidden;}
[data-testid="collapsedControl"] {display: none}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.popover("π Menu"):
st.page_link("Home.py", label="Home", icon="π ")
st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1οΈβ£")
st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2οΈβ£")
st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3οΈβ£")
st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4οΈβ£")
st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5οΈβ£")
st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6οΈβ£")
st.header("Keywords Stem", anchor=False)
st.subheader('Put your file here...', anchor=False)
def reset_data():
st.cache_data.clear()
#===check filetype===
@st.cache_data(ttl=3600)
def get_ext(extype):
extype = uploaded_file.name
return extype
#===upload===
@st.cache_data(ttl=3600)
def upload(extype):
keywords = pd.read_csv(uploaded_file)
return keywords
@st.cache_data(ttl=3600)
def conv_txt(extype):
col_dict = {'TI': 'Title',
'SO': 'Source title',
'DE': 'Author Keywords',
'ID': 'Keywords Plus'}
keywords = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
keywords.rename(columns=col_dict, inplace=True)
return keywords
@st.cache_data(ttl=3600)
def rev_conv_txt(extype):
col_dict_rev = {'Title': 'TI',
'Source title': 'SO',
'Author Keywords': 'DE',
'Keywords Plus': 'ID'}
keywords.rename(columns=col_dict_rev, inplace=True)
return keywords
@st.cache_data(ttl=3600)
def get_data(extype):
list_of_column_key = list(keywords.columns)
list_of_column_key = [k for k in list_of_column_key if 'Keyword' in k]
return list_of_column_key
uploaded_file = st.file_uploader('', type=['csv','txt'], on_change=reset_data)
if uploaded_file is not None:
extype = get_ext(uploaded_file)
if extype.endswith('.csv'):
keywords = upload(extype)
elif extype.endswith('.txt'):
keywords = conv_txt(extype)
list_of_column_key = get_data(extype)
col1, col2 = st.columns(2)
with col1:
method = st.selectbox(
'Choose method',
('Lemmatization', 'Stemming'), on_change=reset_data)
with col2:
keyword = st.selectbox(
'Choose column',
(list_of_column_key), on_change=reset_data)
@st.cache_data(ttl=3600)
def clean_keyword(extype):
global keyword, keywords
try:
key = keywords[keyword]
except KeyError:
st.error('Error: Please check your Author/Index Keywords column.')
sys.exit(1)
keywords = keywords.replace(np.nan, '', regex=True)
keywords[keyword] = keywords[keyword].astype(str)
keywords[keyword] = keywords[keyword].map(lambda x: re.sub('-', ' ', x))
keywords[keyword] = keywords[keyword].map(lambda x: re.sub('; ', ' ; ', x))
keywords[keyword] = keywords[keyword].map(lambda x: x.lower())
#===Keywords list===
key = key.dropna()
key = pd.concat([key.str.split('; ', expand=True)], axis=1)
key = pd.Series(np.ravel(key)).dropna().drop_duplicates().sort_values().reset_index()
key[0] = key[0].map(lambda x: re.sub('-', ' ', x))
key['new']=key[0].map(lambda x: x.lower())
return keywords, key
#===stem/lem===
@st.cache_data(ttl=3600)
def Lemmatization(extype):
lemmatizer = WordNetLemmatizer()
def lemmatize_words(text):
words = text.split()
words = [lemmatizer.lemmatize(word) for word in words]
return ' '.join(words)
keywords[keyword] = keywords[keyword].apply(lemmatize_words)
key['new'] = key['new'].apply(lemmatize_words)
keywords[keyword] = keywords[keyword].map(lambda x: re.sub(' ; ', '; ', x))
return keywords, key
@st.cache_data(ttl=3600)
def Stemming(extype):
stemmer = SnowballStemmer("english")
def stem_words(text):
words = text.split()
words = [stemmer.stem(word) for word in words]
return ' '.join(words)
keywords[keyword] = keywords[keyword].apply(stem_words)
key['new'] = key['new'].apply(stem_words)
keywords[keyword] = keywords[keyword].map(lambda x: re.sub(' ; ', '; ', x))
return keywords, key
keywords, key = clean_keyword(extype)
if method is 'Lemmatization':
keywords, key = Lemmatization(extype)
else:
keywords, key = Stemming(extype)
st.write('Congratulations! π€© You choose',keyword ,'with',method,'method. Now, you can easily download the result by clicking the button below')
st.divider()
#===show & download csv===
tab1, tab2, tab3, tab4 = st.tabs(["π₯ Result", "π₯ List of Keywords", "π Reference", "π Recommended Reading"])
with tab1:
st.dataframe(keywords, use_container_width=True, hide_index=True)
@st.cache_data(ttl=3600)
def convert_df(extype):
return keywords.to_csv(index=False).encode('utf-8')
@st.cache_data(ttl=3600)
def convert_txt(extype):
return keywords.to_csv(index=False, sep='\t', lineterminator='\r').encode('utf-8')
if extype.endswith('.csv'):
csv = convert_df(extype)
st.download_button(
"Press to download result π",
csv,
"scopus.csv",
"text/csv")
elif extype.endswith('.txt'):
keywords = rev_conv_txt(extype)
txt = convert_txt(extype)
st.download_button(
"Press to download result π",
txt,
"savedrecs.txt",
"text/csv")
with tab2:
@st.cache_data(ttl=3600)
def table_keyword(extype):
keytab = key.drop(['index'], axis=1).rename(columns={0: 'label'})
return keytab
#===coloring the same keywords===
@st.cache_data(ttl=3600)
def highlight_cells(value):
if keytab['new'].duplicated(keep=False).any() and keytab['new'].duplicated(keep=False)[keytab['new'] == value].any():
return 'background-color: yellow'
return ''
keytab = table_keyword(extype)
st.dataframe(keytab.style.applymap(highlight_cells, subset=['new']), use_container_width=True, hide_index=True)
@st.cache_data(ttl=3600)
def convert_dfs(extype):
return key.to_csv(index=False).encode('utf-8')
csv = convert_dfs(extype)
st.download_button(
"Press to download keywords π",
csv,
"keywords.csv",
"text/csv")
with tab3:
st.markdown('**Santosa, F. A. (2023). Prior steps into knowledge mapping: Text mining application and comparison. Issues in Science and Technology Librarianship, 102.** https://doi.org/10.29173/istl2736')
with tab4:
st.markdown('**Beri, A. (2021, January 27). Stemming vs Lemmatization. Medium.** https://towardsdatascience.com/stemming-vs-lemmatization-2daddabcb221')
st.markdown('**Khyani, D., Siddhartha B S, Niveditha N M, & Divya B M. (2020). An Interpretation of Lemmatization and Stemming in Natural Language Processing. Journal of University of Shanghai for Science and Technology , 22(10), 350β357.** https://jusst.org/an-interpretation-of-lemmatization-and-stemming-in-natural-language-processing/')
st.markdown('**Lamba, M., & Madhusudhan, M. (2021, July 31). Text Pre-Processing. Text Mining for Information Professionals, 79β103.** https://doi.org/10.1007/978-3-030-85085-2_3') |