File size: 15,998 Bytes
099854e
1e9dacc
099854e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a6752
099854e
 
 
 
 
 
 
 
 
 
 
f365120
099854e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e9dacc
099854e
 
 
 
 
 
 
1e9dacc
099854e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e9dacc
099854e
 
 
 
 
 
 
 
 
 
 
 
1e9dacc
099854e
 
 
 
 
1e9dacc
099854e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f365120
 
099854e
f365120
 
 
 
099854e
f365120
 
099854e
f365120
 
 
 
 
099854e
f365120
099854e
f365120
 
 
 
 
 
 
 
 
 
 
099854e
f365120
 
 
099854e
f365120
099854e
f365120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099854e
f365120
 
099854e
f365120
 
099854e
f365120
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import streamlit as st
import streamlit.components.v1 as components
import scattertext as stx
import pandas as pd
import re
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
import time
import sys

#===config===
st.set_page_config(
    page_title="Coconut",
    page_icon="🥥",
    layout="wide",
    initial_sidebar_state="collapsed"
)

hide_streamlit_style = """
            <style>
            #MainMenu 
            {visibility: hidden;}
            footer {visibility: hidden;}
            [data-testid="collapsedControl"] {display: none}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

with st.popover("🔗 Menu"):
    st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
    st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
    st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
    st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
    st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
    st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
    st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
    
st.header("Scattertext", anchor=False)
st.subheader('Put your file here...', anchor=False)

def reset_all():
    st.cache_data.clear()

@st.cache_data(ttl=3600)
def get_ext(extype):
    extype = uploaded_file.name
    return extype

#===upload file===
@st.cache_data(ttl=3600)
def upload(extype):
    papers = pd.read_csv(uploaded_file)
    #lens.org
    if 'Publication Year' in papers.columns:
               papers.rename(columns={'Publication Year': 'Year', 'Citing Works Count': 'Cited by',
                                     'Publication Type': 'Document Type', 'Source Title': 'Source title'}, inplace=True)
    return papers

@st.cache_data(ttl=3600)
def conv_txt(extype):
    col_dict = {'TI': 'Title',
            'SO': 'Source title',
            'DT': 'Document Type',
            'AB': 'Abstract',
            'PY': 'Year'}
    papers = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
    papers.rename(columns=col_dict, inplace=True)
    return papers

@st.cache_data(ttl=3600)
def get_data(extype): 
    df_col = sorted(papers.select_dtypes(include=['object']).columns.tolist())
    list_title = [col for col in df_col if col.lower() == "title"]
    abstract_pattern = re.compile(r'abstract', re.IGNORECASE)
    list_abstract = [col for col in df_col if abstract_pattern.search(col)]

    if all(col in df_col for col in list_title) and all(col in df_col for col in list_abstract):
        selected_cols = list_abstract + list_title
    elif all(col in df_col for col in list_title):
        selected_cols = list_title
    elif all(col in df_col for col in list_abstract):
        selected_cols = list_abstract
    else:
        selected_cols = df_col

    if not selected_cols:
        selected_cols = df_col
    
    return df_col, selected_cols

@st.cache_data(ttl=3600)
def check_comparison(extype):
    comparison = ['Word-to-word', 'Manual label']
    
    if any('year' in col.lower() for col in papers.columns):
        comparison.append('Years')
    if any('source title' in col.lower() for col in papers.columns):
        comparison.append('Sources')

    comparison.sort(reverse=False)
    return comparison

#===clean csv===
@st.cache_data(ttl=3600, show_spinner=False)
def clean_csv(extype):
    paper = papers.dropna(subset=[ColCho])
                 
    #===mapping===
    paper[ColCho].map(lambda x: x.lower())
    if rem_punc:
        paper[ColCho] = paper[ColCho].map(lambda x: re.sub('[,:;\.!-?•=]', ' ', x))
        paper[ColCho] = paper[ColCho].str.replace('\u201c|\u201d', '', regex=True) 
    if rem_copyright:
        paper[ColCho] = paper[ColCho].map(lambda x: re.sub('©.*', '', x))
        
    #===stopword removal===
    stop = stopwords.words('english')
    paper[ColCho] = paper[ColCho].apply(lambda x: ' '.join([word for word in x.split() if word not in stop]))
          
    #===lemmatize===
    lemmatizer = WordNetLemmatizer()
    def lemmatize_words(text):
        words = text.split()
        words = [lemmatizer.lemmatize(word) for word in words]
        return ' '.join(words)
    paper[ColCho] = paper[ColCho].apply(lemmatize_words)
    
    words_rmv = [word.strip() for word in words_to_remove.split(";")]
    remove_set = set(words_rmv)
    def remove_words(text):
        words = text.split()  
        cleaned_words = [word for word in words if word not in remove_set]
        return ' '.join(cleaned_words) 
    paper[ColCho] = paper[ColCho].apply(remove_words)
         
    return paper

@st.cache_data(ttl=3600)
def get_minmax(extype):
    MIN = int(papers['Year'].min())
    MAX = int(papers['Year'].max())
    GAP = MAX - MIN
    MID = round((MIN + MAX) / 2)
    return MIN, MAX, GAP, MID

@st.cache_data(ttl=3600)
def running_scattertext(cat_col, catname, noncatname):
    try:
        corpus = stx.CorpusFromPandas(filtered_df,         
                                category_col = cat_col,
                                text_col = ColCho,
                                nlp = stx.whitespace_nlp_with_sentences,
                                ).build().get_unigram_corpus().remove_infrequent_words(minimum_term_count = min_term)        
                                
        st.toast('Building corpus completed', icon='🎉')
            
        try:
            html = stx.produce_scattertext_explorer(corpus,
                                                category = catname,
                                                category_name = catname,
                                                not_category_name = noncatname,
                                                width_in_pixels = 900,
                                                minimum_term_frequency = 0,
                                                metadata = filtered_df['Title'],
                                                save_svg_button=True)
    
        except KeyError:
            html = stx.produce_scattertext_explorer(corpus,
                                                category = catname,
                                                category_name = catname,
                                                not_category_name = noncatname,
                                                width_in_pixels = 900,
                                                minimum_term_frequency = 0,
                                                save_svg_button=True)
    
        st.toast('Process completed', icon='🎉')
        time.sleep(1)
        st.toast('Visualizing', icon='⏳')
        components.html(html, height = 1200, scrolling = True) 

    except ValueError:
        st.warning('Please decrease the Minimum term count in the advanced settings.', icon="⚠️")
        sys.exit()

@st.cache_data(ttl=3600)
def df_w2w(search_terms1, search_terms2):
    selected_col = [ColCho]
    dfs1 = pd.DataFrame()
    for term in search_terms1:
        dfs1 = pd.concat([dfs1, paper[paper[selected_col[0]].str.contains(r'\b' + term + r'\b', case=False, na=False)]], ignore_index=True)
    dfs1['Topic'] = 'First Term'
    dfs1 = dfs1.drop_duplicates()
        
    dfs2 = pd.DataFrame()
    for term in search_terms2:
        dfs2 = pd.concat([dfs2, paper[paper[selected_col[0]].str.contains(r'\b' + term + r'\b', case=False, na=False)]], ignore_index=True)
    dfs2['Topic'] = 'Second Term'
    dfs2 = dfs2.drop_duplicates()
    filtered_df = pd.concat([dfs1, dfs2], ignore_index=True)
    
    return dfs1, dfs2, filtered_df

@st.cache_data(ttl=3600)
def df_sources(stitle1, stitle2):
    dfs1 = paper[paper['Source title'].str.contains(stitle1, case=False, na=False)]
    dfs1['Topic'] = stitle1
    dfs2 = paper[paper['Source title'].str.contains(stitle2, case=False, na=False)]
    dfs2['Topic'] = stitle2
    filtered_df = pd.concat([dfs1, dfs2], ignore_index=True)

    return filtered_df  

@st.cache_data(ttl=3600)
def df_years(first_range, second_range):
    first_range_filter_df = paper[(paper['Year'] >= first_range[0]) & (paper['Year'] <= first_range[1])].copy()
    first_range_filter_df['Topic Range'] = 'First range'
        
    second_range_filter_df = paper[(paper['Year'] >= second_range[0]) & (paper['Year'] <= second_range[1])].copy()
    second_range_filter_df['Topic Range'] = 'Second range'
        
    filtered_df = pd.concat([first_range_filter_df, second_range_filter_df], ignore_index=True)

    return filtered_df 

#===Read data===
uploaded_file = st.file_uploader('', type=['csv', 'txt'], on_change=reset_all)

if uploaded_file is not None:
    try:
        extype = get_ext(uploaded_file)
    
        if extype.endswith('.csv'):
             papers = upload(extype) 
        elif extype.endswith('.txt'):
             papers = conv_txt(extype)
    
        df_col, selected_cols = get_data(extype)
        comparison = check_comparison(extype)
    
        #Menu
        c1, c2, c3 = st.columns([4,0.1,4])
        ColCho = c1.selectbox(
                'Choose column to analyze',
                (selected_cols), on_change=reset_all)
    
        c2.write('')
    
        compare = c3.selectbox(
                'Type of comparison',
                (comparison), on_change=reset_all)
        
        with st.expander("🧮 Show advance settings"):
            y1, y2 = st.columns([8,2])
            t1, t2 = st.columns([3,3])
            words_to_remove = y1.text_input('Input your text', on_change=reset_all, placeholder='Remove specific words. Separate words by semicolons (;)')
            min_term = y2.number_input("Minimum term count", min_value=0, max_value=10, value=3, step=1, on_change=reset_all)
            rem_copyright = t1.toggle('Remove copyright statement', value=True, on_change=reset_all)
            rem_punc = t2.toggle('Remove punctuation', value=False, on_change=reset_all)
    
        st.info('Scattertext is an expensive process when dealing with a large volume of text with our existing resources. Please kindly wait until the visualization appears.', icon="ℹ️")
        
        paper = clean_csv(extype)
    
        tab1, tab2, tab3 = st.tabs(["📈 Generate visualization", "📃 Reference", "📓 Recommended Reading"])
    
        with tab1:
             #===visualization===
            if compare == 'Word-to-word':
                col1, col2, col3 = st.columns([4,0.1,4])
                text1 = col1.text_input('First Term', on_change=reset_all, placeholder='put comma if you have more than one')
                search_terms1 = [term.strip() for term in text1.split(",") if term.strip()]
                col2.write('')
                text2 = col3.text_input('Second Term', on_change=reset_all, placeholder='put comma if you have more than one')
                search_terms2 = [term.strip() for term in text2.split(",") if term.strip()]
                
                dfs1, dfs2, filtered_df = df_w2w(search_terms1, search_terms2)
        
                if dfs1.empty and dfs2.empty:
                    st.warning('We cannot find anything in your document.', icon="⚠️")
                elif dfs1.empty:
                    st.warning(f'We cannot find {text1} in your document.', icon="⚠️")
                elif dfs2.empty:
                    st.warning(f'We cannot find {text2} in your document.', icon="⚠️")
                else:
                    with st.spinner('Processing. Please wait until the visualization comes up'):
                        running_scattertext('Topic', 'First Term', 'Second Term')
        
            elif compare == 'Manual label':
                col1, col2, col3 = st.columns(3)
        
                df_col_sel = sorted([col for col in paper.columns.tolist()])
                     
                column_selected = col1.selectbox(
                    'Choose column',
                    (df_col_sel), on_change=reset_all)
        
                list_words = paper[column_selected].values.tolist()
                list_unique = sorted(list(set(list_words)))
                
                if column_selected is not None:
                    label1 = col2.selectbox(
                        'Choose first label',
                        (list_unique), on_change=reset_all)
        
                    default_index = 0 if len(list_unique) == 1 else 1
                    label2 = col3.selectbox(
                        'Choose second label',
                        (list_unique), on_change=reset_all, index=default_index)
        
                filtered_df = paper[paper[column_selected].isin([label1, label2])].reset_index(drop=True)
                
                with st.spinner('Processing. Please wait until the visualization comes up'):
                    running_scattertext(column_selected, label1, label2)
        
            elif compare == 'Sources':
                col1, col2, col3 = st.columns([4,0.1,4])
        
                unique_stitle = set()
                unique_stitle.update(paper['Source title'].dropna())
                list_stitle = sorted(list(unique_stitle))
                     
                stitle1 = col1.selectbox(
                    'Choose first label',
                    (list_stitle), on_change=reset_all)
                col2.write('')
                default_index = 0 if len(list_stitle) == 1 else 1
                stitle2 = col3.selectbox(
                    'Choose second label',
                    (list_stitle), on_change=reset_all, index=default_index)
        
                filtered_df = df_sources(stitle1, stitle2)
        
                with st.spinner('Processing. Please wait until the visualization comes up'):
                    running_scattertext('Source title', stitle1, stitle2)
        
            elif compare == 'Years':
                col1, col2, col3 = st.columns([4,0.1,4])
                
                MIN, MAX, GAP, MID = get_minmax(extype)
                if (GAP != 0):
                    first_range = col1.slider('First Range', min_value=MIN, max_value=MAX, value=(MIN, MID), on_change=reset_all)
                    col2.write('')
                    second_range = col3.slider('Second Range', min_value=MIN, max_value=MAX, value=(MID, MAX), on_change=reset_all)
                
                    filtered_df = df_years(first_range, second_range)
        
                    with st.spinner('Processing. Please wait until the visualization comes up'):
                        running_scattertext('Topic Range', 'First range', 'Second range')
    
                else:
                    st.write('You only have data in ', (MAX))
    
        with tab2:
            st.markdown('**Jason Kessler. 2017. Scattertext: a Browser-Based Tool for Visualizing how Corpora Differ. In Proceedings of ACL 2017, System Demonstrations, pages 85–90, Vancouver, Canada. Association for Computational Linguistics.** https://doi.org/10.48550/arXiv.1703.00565')
    
        with tab3:
            st.markdown('**Marrone, M., & Linnenluecke, M.K. (2020). Interdisciplinary Research Maps: A new technique for visualizing research topics. PLoS ONE, 15.** https://doi.org/10.1371/journal.pone.0242283')
            st.markdown('**Moreno, A., & Iglesias, C.A. (2021). Understanding Customers’ Transport Services with Topic Clustering and Sentiment Analysis. Applied Sciences.** https://doi.org/10.3390/app112110169')
            st.markdown('**Sánchez-Franco, M.J., & Rey-Tienda, S. (2023). The role of user-generated content in tourism decision-making: an exemplary study of Andalusia, Spain. Management Decision.** https://doi.org/10.1108/MD-06-2023-0966')

    except:
        st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
        st.stop()