Spaces:
Running
Running
File size: 15,998 Bytes
099854e 1e9dacc 099854e d5a6752 099854e f365120 099854e 1e9dacc 099854e 1e9dacc 099854e 1e9dacc 099854e 1e9dacc 099854e 1e9dacc 099854e f365120 099854e f365120 099854e f365120 099854e f365120 099854e f365120 099854e f365120 099854e f365120 099854e f365120 099854e f365120 099854e f365120 099854e f365120 099854e f365120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import streamlit as st
import streamlit.components.v1 as components
import scattertext as stx
import pandas as pd
import re
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
import time
import sys
#===config===
st.set_page_config(
page_title="Coconut",
page_icon="🥥",
layout="wide",
initial_sidebar_state="collapsed"
)
hide_streamlit_style = """
<style>
#MainMenu
{visibility: hidden;}
footer {visibility: hidden;}
[data-testid="collapsedControl"] {display: none}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.popover("🔗 Menu"):
st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
st.header("Scattertext", anchor=False)
st.subheader('Put your file here...', anchor=False)
def reset_all():
st.cache_data.clear()
@st.cache_data(ttl=3600)
def get_ext(extype):
extype = uploaded_file.name
return extype
#===upload file===
@st.cache_data(ttl=3600)
def upload(extype):
papers = pd.read_csv(uploaded_file)
#lens.org
if 'Publication Year' in papers.columns:
papers.rename(columns={'Publication Year': 'Year', 'Citing Works Count': 'Cited by',
'Publication Type': 'Document Type', 'Source Title': 'Source title'}, inplace=True)
return papers
@st.cache_data(ttl=3600)
def conv_txt(extype):
col_dict = {'TI': 'Title',
'SO': 'Source title',
'DT': 'Document Type',
'AB': 'Abstract',
'PY': 'Year'}
papers = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
papers.rename(columns=col_dict, inplace=True)
return papers
@st.cache_data(ttl=3600)
def get_data(extype):
df_col = sorted(papers.select_dtypes(include=['object']).columns.tolist())
list_title = [col for col in df_col if col.lower() == "title"]
abstract_pattern = re.compile(r'abstract', re.IGNORECASE)
list_abstract = [col for col in df_col if abstract_pattern.search(col)]
if all(col in df_col for col in list_title) and all(col in df_col for col in list_abstract):
selected_cols = list_abstract + list_title
elif all(col in df_col for col in list_title):
selected_cols = list_title
elif all(col in df_col for col in list_abstract):
selected_cols = list_abstract
else:
selected_cols = df_col
if not selected_cols:
selected_cols = df_col
return df_col, selected_cols
@st.cache_data(ttl=3600)
def check_comparison(extype):
comparison = ['Word-to-word', 'Manual label']
if any('year' in col.lower() for col in papers.columns):
comparison.append('Years')
if any('source title' in col.lower() for col in papers.columns):
comparison.append('Sources')
comparison.sort(reverse=False)
return comparison
#===clean csv===
@st.cache_data(ttl=3600, show_spinner=False)
def clean_csv(extype):
paper = papers.dropna(subset=[ColCho])
#===mapping===
paper[ColCho].map(lambda x: x.lower())
if rem_punc:
paper[ColCho] = paper[ColCho].map(lambda x: re.sub('[,:;\.!-?•=]', ' ', x))
paper[ColCho] = paper[ColCho].str.replace('\u201c|\u201d', '', regex=True)
if rem_copyright:
paper[ColCho] = paper[ColCho].map(lambda x: re.sub('©.*', '', x))
#===stopword removal===
stop = stopwords.words('english')
paper[ColCho] = paper[ColCho].apply(lambda x: ' '.join([word for word in x.split() if word not in stop]))
#===lemmatize===
lemmatizer = WordNetLemmatizer()
def lemmatize_words(text):
words = text.split()
words = [lemmatizer.lemmatize(word) for word in words]
return ' '.join(words)
paper[ColCho] = paper[ColCho].apply(lemmatize_words)
words_rmv = [word.strip() for word in words_to_remove.split(";")]
remove_set = set(words_rmv)
def remove_words(text):
words = text.split()
cleaned_words = [word for word in words if word not in remove_set]
return ' '.join(cleaned_words)
paper[ColCho] = paper[ColCho].apply(remove_words)
return paper
@st.cache_data(ttl=3600)
def get_minmax(extype):
MIN = int(papers['Year'].min())
MAX = int(papers['Year'].max())
GAP = MAX - MIN
MID = round((MIN + MAX) / 2)
return MIN, MAX, GAP, MID
@st.cache_data(ttl=3600)
def running_scattertext(cat_col, catname, noncatname):
try:
corpus = stx.CorpusFromPandas(filtered_df,
category_col = cat_col,
text_col = ColCho,
nlp = stx.whitespace_nlp_with_sentences,
).build().get_unigram_corpus().remove_infrequent_words(minimum_term_count = min_term)
st.toast('Building corpus completed', icon='🎉')
try:
html = stx.produce_scattertext_explorer(corpus,
category = catname,
category_name = catname,
not_category_name = noncatname,
width_in_pixels = 900,
minimum_term_frequency = 0,
metadata = filtered_df['Title'],
save_svg_button=True)
except KeyError:
html = stx.produce_scattertext_explorer(corpus,
category = catname,
category_name = catname,
not_category_name = noncatname,
width_in_pixels = 900,
minimum_term_frequency = 0,
save_svg_button=True)
st.toast('Process completed', icon='🎉')
time.sleep(1)
st.toast('Visualizing', icon='⏳')
components.html(html, height = 1200, scrolling = True)
except ValueError:
st.warning('Please decrease the Minimum term count in the advanced settings.', icon="⚠️")
sys.exit()
@st.cache_data(ttl=3600)
def df_w2w(search_terms1, search_terms2):
selected_col = [ColCho]
dfs1 = pd.DataFrame()
for term in search_terms1:
dfs1 = pd.concat([dfs1, paper[paper[selected_col[0]].str.contains(r'\b' + term + r'\b', case=False, na=False)]], ignore_index=True)
dfs1['Topic'] = 'First Term'
dfs1 = dfs1.drop_duplicates()
dfs2 = pd.DataFrame()
for term in search_terms2:
dfs2 = pd.concat([dfs2, paper[paper[selected_col[0]].str.contains(r'\b' + term + r'\b', case=False, na=False)]], ignore_index=True)
dfs2['Topic'] = 'Second Term'
dfs2 = dfs2.drop_duplicates()
filtered_df = pd.concat([dfs1, dfs2], ignore_index=True)
return dfs1, dfs2, filtered_df
@st.cache_data(ttl=3600)
def df_sources(stitle1, stitle2):
dfs1 = paper[paper['Source title'].str.contains(stitle1, case=False, na=False)]
dfs1['Topic'] = stitle1
dfs2 = paper[paper['Source title'].str.contains(stitle2, case=False, na=False)]
dfs2['Topic'] = stitle2
filtered_df = pd.concat([dfs1, dfs2], ignore_index=True)
return filtered_df
@st.cache_data(ttl=3600)
def df_years(first_range, second_range):
first_range_filter_df = paper[(paper['Year'] >= first_range[0]) & (paper['Year'] <= first_range[1])].copy()
first_range_filter_df['Topic Range'] = 'First range'
second_range_filter_df = paper[(paper['Year'] >= second_range[0]) & (paper['Year'] <= second_range[1])].copy()
second_range_filter_df['Topic Range'] = 'Second range'
filtered_df = pd.concat([first_range_filter_df, second_range_filter_df], ignore_index=True)
return filtered_df
#===Read data===
uploaded_file = st.file_uploader('', type=['csv', 'txt'], on_change=reset_all)
if uploaded_file is not None:
try:
extype = get_ext(uploaded_file)
if extype.endswith('.csv'):
papers = upload(extype)
elif extype.endswith('.txt'):
papers = conv_txt(extype)
df_col, selected_cols = get_data(extype)
comparison = check_comparison(extype)
#Menu
c1, c2, c3 = st.columns([4,0.1,4])
ColCho = c1.selectbox(
'Choose column to analyze',
(selected_cols), on_change=reset_all)
c2.write('')
compare = c3.selectbox(
'Type of comparison',
(comparison), on_change=reset_all)
with st.expander("🧮 Show advance settings"):
y1, y2 = st.columns([8,2])
t1, t2 = st.columns([3,3])
words_to_remove = y1.text_input('Input your text', on_change=reset_all, placeholder='Remove specific words. Separate words by semicolons (;)')
min_term = y2.number_input("Minimum term count", min_value=0, max_value=10, value=3, step=1, on_change=reset_all)
rem_copyright = t1.toggle('Remove copyright statement', value=True, on_change=reset_all)
rem_punc = t2.toggle('Remove punctuation', value=False, on_change=reset_all)
st.info('Scattertext is an expensive process when dealing with a large volume of text with our existing resources. Please kindly wait until the visualization appears.', icon="ℹ️")
paper = clean_csv(extype)
tab1, tab2, tab3 = st.tabs(["📈 Generate visualization", "📃 Reference", "📓 Recommended Reading"])
with tab1:
#===visualization===
if compare == 'Word-to-word':
col1, col2, col3 = st.columns([4,0.1,4])
text1 = col1.text_input('First Term', on_change=reset_all, placeholder='put comma if you have more than one')
search_terms1 = [term.strip() for term in text1.split(",") if term.strip()]
col2.write('')
text2 = col3.text_input('Second Term', on_change=reset_all, placeholder='put comma if you have more than one')
search_terms2 = [term.strip() for term in text2.split(",") if term.strip()]
dfs1, dfs2, filtered_df = df_w2w(search_terms1, search_terms2)
if dfs1.empty and dfs2.empty:
st.warning('We cannot find anything in your document.', icon="⚠️")
elif dfs1.empty:
st.warning(f'We cannot find {text1} in your document.', icon="⚠️")
elif dfs2.empty:
st.warning(f'We cannot find {text2} in your document.', icon="⚠️")
else:
with st.spinner('Processing. Please wait until the visualization comes up'):
running_scattertext('Topic', 'First Term', 'Second Term')
elif compare == 'Manual label':
col1, col2, col3 = st.columns(3)
df_col_sel = sorted([col for col in paper.columns.tolist()])
column_selected = col1.selectbox(
'Choose column',
(df_col_sel), on_change=reset_all)
list_words = paper[column_selected].values.tolist()
list_unique = sorted(list(set(list_words)))
if column_selected is not None:
label1 = col2.selectbox(
'Choose first label',
(list_unique), on_change=reset_all)
default_index = 0 if len(list_unique) == 1 else 1
label2 = col3.selectbox(
'Choose second label',
(list_unique), on_change=reset_all, index=default_index)
filtered_df = paper[paper[column_selected].isin([label1, label2])].reset_index(drop=True)
with st.spinner('Processing. Please wait until the visualization comes up'):
running_scattertext(column_selected, label1, label2)
elif compare == 'Sources':
col1, col2, col3 = st.columns([4,0.1,4])
unique_stitle = set()
unique_stitle.update(paper['Source title'].dropna())
list_stitle = sorted(list(unique_stitle))
stitle1 = col1.selectbox(
'Choose first label',
(list_stitle), on_change=reset_all)
col2.write('')
default_index = 0 if len(list_stitle) == 1 else 1
stitle2 = col3.selectbox(
'Choose second label',
(list_stitle), on_change=reset_all, index=default_index)
filtered_df = df_sources(stitle1, stitle2)
with st.spinner('Processing. Please wait until the visualization comes up'):
running_scattertext('Source title', stitle1, stitle2)
elif compare == 'Years':
col1, col2, col3 = st.columns([4,0.1,4])
MIN, MAX, GAP, MID = get_minmax(extype)
if (GAP != 0):
first_range = col1.slider('First Range', min_value=MIN, max_value=MAX, value=(MIN, MID), on_change=reset_all)
col2.write('')
second_range = col3.slider('Second Range', min_value=MIN, max_value=MAX, value=(MID, MAX), on_change=reset_all)
filtered_df = df_years(first_range, second_range)
with st.spinner('Processing. Please wait until the visualization comes up'):
running_scattertext('Topic Range', 'First range', 'Second range')
else:
st.write('You only have data in ', (MAX))
with tab2:
st.markdown('**Jason Kessler. 2017. Scattertext: a Browser-Based Tool for Visualizing how Corpora Differ. In Proceedings of ACL 2017, System Demonstrations, pages 85–90, Vancouver, Canada. Association for Computational Linguistics.** https://doi.org/10.48550/arXiv.1703.00565')
with tab3:
st.markdown('**Marrone, M., & Linnenluecke, M.K. (2020). Interdisciplinary Research Maps: A new technique for visualizing research topics. PLoS ONE, 15.** https://doi.org/10.1371/journal.pone.0242283')
st.markdown('**Moreno, A., & Iglesias, C.A. (2021). Understanding Customers’ Transport Services with Topic Clustering and Sentiment Analysis. Applied Sciences.** https://doi.org/10.3390/app112110169')
st.markdown('**Sánchez-Franco, M.J., & Rey-Tienda, S. (2023). The role of user-generated content in tourism decision-making: an exemplary study of Andalusia, Spain. Management Decision.** https://doi.org/10.1108/MD-06-2023-0966')
except:
st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
st.stop() |