coconut / pages /3 Bidirected Network.py
faizhalas's picture
Update pages/3 Bidirected Network.py
f151e59 verified
raw
history blame
11.4 kB
#import module
import streamlit as st
import pandas as pd
import re
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
from mlxtend.preprocessing import TransactionEncoder
te = TransactionEncoder()
from mlxtend.frequent_patterns import fpgrowth
from mlxtend.frequent_patterns import association_rules
from streamlit_agraph import agraph, Node, Edge, Config
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.snowball import SnowballStemmer
import sys
import time
#===config===
st.set_page_config(
page_title="Coconut",
page_icon="πŸ₯₯",
layout="wide",
initial_sidebar_state="collapsed"
)
hide_streamlit_style = """
<style>
#MainMenu
{visibility: hidden;}
footer {visibility: hidden;}
[data-testid="collapsedControl"] {display: none}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.popover("πŸ”— Menu"):
st.page_link("Home.py", label="Home", icon="🏠")
st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
st.header("Bidirected Network", anchor=False)
st.subheader('Put your file here...', anchor=False)
#===clear cache===
def reset_all():
st.cache_data.clear()
#===check type===
@st.cache_data(ttl=3600)
def get_ext(extype):
extype = uploaded_file.name
return extype
@st.cache_data(ttl=3600)
def upload(extype):
papers = pd.read_csv(uploaded_file)
return papers
@st.cache_data(ttl=3600)
def conv_txt(extype):
col_dict = {'TI': 'Title',
'SO': 'Source title',
'DT': 'Document Type',
'DE': 'Author Keywords',
'ID': 'Keywords Plus'}
papers = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
papers.rename(columns=col_dict, inplace=True)
return papers
#===Read data===
uploaded_file = st.file_uploader('', type=['csv', 'txt'], on_change=reset_all)
if uploaded_file is not None:
extype = get_ext(uploaded_file)
if extype.endswith('.csv'):
papers = upload(extype)
elif extype.endswith('.txt'):
papers = conv_txt(extype)
@st.cache_data(ttl=3600)
def get_data_arul(extype):
list_of_column_key = list(papers.columns)
list_of_column_key = [k for k in list_of_column_key if 'Keyword' in k]
return papers, list_of_column_key
papers, list_of_column_key = get_data_arul(extype)
col1, col2 = st.columns(2)
with col1:
method = st.selectbox(
'Choose method',
('Lemmatization', 'Stemming'), on_change=reset_all)
with col2:
keyword = st.selectbox(
'Choose column',
(list_of_column_key), on_change=reset_all)
#===body===
@st.cache_data(ttl=3600)
def clean_arul(extype):
global keyword, papers
try:
arul = papers.dropna(subset=[keyword])
except KeyError:
st.error('Error: Please check your Author/Index Keywords column.')
sys.exit(1)
arul[keyword] = arul[keyword].map(lambda x: re.sub('-—–', ' ', x))
arul[keyword] = arul[keyword].map(lambda x: re.sub('; ', ' ; ', x))
arul[keyword] = arul[keyword].map(lambda x: x.lower())
arul[keyword] = arul[keyword].dropna()
return arul
arul = clean_arul(extype)
#===stem/lem===
@st.cache_data(ttl=3600)
def lemma_arul(extype):
lemmatizer = WordNetLemmatizer()
def lemmatize_words(text):
words = text.split()
words = [lemmatizer.lemmatize(word) for word in words]
return ' '.join(words)
arul[keyword] = arul[keyword].apply(lemmatize_words)
return arul
@st.cache_data(ttl=3600)
def stem_arul(extype):
stemmer = SnowballStemmer("english")
def stem_words(text):
words = text.split()
words = [stemmer.stem(word) for word in words]
return ' '.join(words)
arul[keyword] = arul[keyword].apply(stem_words)
return arul
if method is 'Lemmatization':
arul = lemma_arul(extype)
else:
arul = stem_arul(extype)
@st.cache_data(ttl=3600)
def arm(extype):
arule = arul[keyword].str.split(' ; ')
arule_list = arule.values.tolist()
te_ary = te.fit(arule_list).transform(arule_list)
df = pd.DataFrame(te_ary, columns=te.columns_)
return df
df = arm(extype)
col1, col2, col3 = st.columns(3)
with col1:
supp = st.slider(
'Select value of Support',
0.001, 1.000, (0.010), on_change=reset_all)
with col2:
conf = st.slider(
'Select value of Confidence',
0.001, 1.000, (0.050), on_change=reset_all)
with col3:
maxlen = st.slider(
'Maximum length of the itemsets generated',
2, 8, (2), on_change=reset_all)
tab1, tab2, tab3 = st.tabs(["πŸ“ˆ Result & Generate visualization", "πŸ“ƒ Reference", "πŸ““ Recommended Reading"])
with tab1:
#===Association rules===
@st.cache_data(ttl=3600)
def freqitem(extype):
freq_item = fpgrowth(df, min_support=supp, use_colnames=True, max_len=maxlen)
return freq_item
freq_item = freqitem(extype)
col1, col2 = st.columns(2)
with col1:
st.write('🚨 The more data you have, the longer you will have to wait.')
with col2:
showall = st.checkbox('Show all nodes', value=True, on_change=reset_all)
@st.cache_data(ttl=3600)
def arm_table(extype):
restab = association_rules(freq_item, metric='confidence', min_threshold=conf)
restab = restab[['antecedents', 'consequents', 'antecedent support', 'consequent support', 'support', 'confidence', 'lift', 'conviction']]
restab['antecedents'] = restab['antecedents'].apply(lambda x: ', '.join(list(x))).astype('unicode')
restab['consequents'] = restab['consequents'].apply(lambda x: ', '.join(list(x))).astype('unicode')
if showall:
restab['Show'] = True
else:
restab['Show'] = False
return restab
if freq_item.empty:
st.error('Please lower your value.', icon="🚨")
else:
restab = arm_table(extype)
restab = st.data_editor(restab, use_container_width=True)
res = restab[restab['Show'] == True]
#===visualize===
if st.button('πŸ“ˆ Generate network visualization', on_click=reset_all):
with st.spinner('Visualizing, please wait ....'):
@st.cache_data(ttl=3600)
def map_node(extype):
res['to'] = res['antecedents'] + ' β†’ ' + res['consequents'] + '\n Support = ' + res['support'].astype(str) + '\n Confidence = ' + res['confidence'].astype(str) + '\n Conviction = ' + res['conviction'].astype(str)
res_ant = res[['antecedents','antecedent support']].rename(columns={'antecedents': 'node', 'antecedent support': 'size'})
res_con = res[['consequents','consequent support']].rename(columns={'consequents': 'node', 'consequent support': 'size'})
res_node = pd.concat([res_ant, res_con]).drop_duplicates(keep='first')
return res_node, res
res_node, res = map_node(extype)
@st.cache_data(ttl=3600)
def arul_network(extype):
nodes = []
edges = []
for w,x in zip(res_node['size'], res_node['node']):
nodes.append( Node(id=x,
label=x,
size=50*w+10,
shape="dot",
labelHighlightBold=True,
group=x,
opacity=10,
mass=1)
)
for y,z,a,b in zip(res['antecedents'],res['consequents'],res['confidence'],res['to']):
edges.append( Edge(source=y,
target=z,
title=b,
width=a*2,
physics=True,
smooth=True
)
)
return nodes, edges
nodes, edges = arul_network(extype)
config = Config(width=1200,
height=800,
directed=True,
physics=True,
hierarchical=False,
maxVelocity=5
)
return_value = agraph(nodes=nodes,
edges=edges,
config=config)
time.sleep(1)
st.toast('Process completed', icon='πŸ“ˆ')
with tab2:
st.markdown('**Santosa, F. A. (2023). Adding Perspective to the Bibliometric Mapping Using Bidirected Graph. Open Information Science, 7(1), 20220152.** https://doi.org/10.1515/opis-2022-0152')
with tab3:
st.markdown('**Agrawal, R., ImieliΕ„ski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In ACM SIGMOD Record (Vol. 22, Issue 2, pp. 207–216). Association for Computing Machinery (ACM).** https://doi.org/10.1145/170036.170072')
st.markdown('**Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Record, 26(2), 255–264.** https://doi.org/10.1145/253262.253325')
st.markdown('**Edmonds, J., & Johnson, E. L. (2003). Matching: A Well-Solved Class of Integer Linear Programs. Combinatorial Optimization β€” Eureka, You Shrink!, 27–30.** https://doi.org/10.1007/3-540-36478-1_3')
st.markdown('**Li, M. (2016, August 23). An exploration to visualise the emerging trends of technology foresight based on an improved technique of co-word analysis and relevant literature data of WOS. Technology Analysis & Strategic Management, 29(6), 655–671.** https://doi.org/10.1080/09537325.2016.1220518')