Spaces:
Running
Running
Create 5 Burst Detection.py
Browse files- pages/5 Burst Detection.py +309 -0
pages/5 Burst Detection.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
4 |
+
from nltk.tokenize import word_tokenize
|
5 |
+
from nltk.corpus import stopwords
|
6 |
+
import nltk
|
7 |
+
import spacy
|
8 |
+
from burst_detection import burst_detection, enumerate_bursts, burst_weights
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import os
|
11 |
+
import math
|
12 |
+
import numpy as np
|
13 |
+
import plotly.graph_objects as go
|
14 |
+
from plotly.subplots import make_subplots
|
15 |
+
import sys
|
16 |
+
|
17 |
+
#===config===
|
18 |
+
st.set_page_config(
|
19 |
+
page_title="Coconut",
|
20 |
+
page_icon="🥥",
|
21 |
+
layout="wide",
|
22 |
+
initial_sidebar_state="collapsed"
|
23 |
+
)
|
24 |
+
|
25 |
+
hide_streamlit_style = """
|
26 |
+
<style>
|
27 |
+
#MainMenu
|
28 |
+
{visibility: hidden;}
|
29 |
+
footer {visibility: hidden;}
|
30 |
+
[data-testid="collapsedControl"] {display: none}
|
31 |
+
</style>
|
32 |
+
"""
|
33 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
34 |
+
|
35 |
+
with st.popover("🔗 Menu"):
|
36 |
+
st.page_link("Home.py", label="Home", icon="🏠")
|
37 |
+
st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
|
38 |
+
st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
|
39 |
+
st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
|
40 |
+
st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
|
41 |
+
st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
|
42 |
+
st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
|
43 |
+
|
44 |
+
st.header("Burst Detection", anchor=False)
|
45 |
+
st.subheader('Put your file here...', anchor=False)
|
46 |
+
|
47 |
+
#===clear cache===
|
48 |
+
def reset_all():
|
49 |
+
st.cache_data.clear()
|
50 |
+
|
51 |
+
# Initialize NLP model
|
52 |
+
nlp = spacy.load("en_core_web_md")
|
53 |
+
|
54 |
+
@st.cache_data(ttl=3600)
|
55 |
+
def upload(extype):
|
56 |
+
df = pd.read_csv(uploaded_file)
|
57 |
+
#lens.org
|
58 |
+
if 'Publication Year' in df.columns:
|
59 |
+
df.rename(columns={'Publication Year': 'Year', 'Citing Works Count': 'Cited by',
|
60 |
+
'Publication Type': 'Document Type', 'Source Title': 'Source title'}, inplace=True)
|
61 |
+
return df
|
62 |
+
|
63 |
+
@st.cache_data(ttl=3600)
|
64 |
+
def get_ext(uploaded_file):
|
65 |
+
extype = uploaded_file.name
|
66 |
+
return extype
|
67 |
+
|
68 |
+
@st.cache_data(ttl=3600)
|
69 |
+
def get_minmax(df):
|
70 |
+
MIN = int(df['Year'].min())
|
71 |
+
MAX = int(df['Year'].max())
|
72 |
+
GAP = MAX - MIN
|
73 |
+
return MIN, MAX, GAP
|
74 |
+
|
75 |
+
@st.cache_data(ttl=3600)
|
76 |
+
def conv_txt(extype):
|
77 |
+
col_dict = {'TI': 'Title',
|
78 |
+
'SO': 'Source title',
|
79 |
+
'DT': 'Document Type',
|
80 |
+
'AB': 'Abstract',
|
81 |
+
'PY': 'Year'}
|
82 |
+
df = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
|
83 |
+
df.rename(columns=col_dict, inplace=True)
|
84 |
+
return df
|
85 |
+
|
86 |
+
# Helper Functions
|
87 |
+
@st.cache_data(ttl=3600)
|
88 |
+
def get_column_name(df, possible_names):
|
89 |
+
"""Find and return existing column names from a list of possible names."""
|
90 |
+
for name in possible_names:
|
91 |
+
if name in df.columns:
|
92 |
+
return name
|
93 |
+
raise ValueError(f"None of the possible names {possible_names} found in DataFrame columns.")
|
94 |
+
|
95 |
+
@st.cache_data(ttl=3600)
|
96 |
+
def preprocess_text(text):
|
97 |
+
"""Lemmatize and remove stopwords from text."""
|
98 |
+
return ' '.join([token.lemma_.lower() for token in nlp(text) if token.is_alpha and not token.is_stop])
|
99 |
+
|
100 |
+
@st.cache_data(ttl=3600)
|
101 |
+
def load_data(uploaded_file):
|
102 |
+
"""Load data from the uploaded file."""
|
103 |
+
extype = get_ext(uploaded_file)
|
104 |
+
if extype.endswith('.csv'):
|
105 |
+
df = upload(extype)
|
106 |
+
elif extype.endswith('.txt'):
|
107 |
+
df = conv_txt(extype)
|
108 |
+
|
109 |
+
df['Year'] = pd.to_numeric(df['Year'], errors='coerce')
|
110 |
+
df = df.dropna(subset=['Year'])
|
111 |
+
df['Year'] = df['Year'].astype(int)
|
112 |
+
|
113 |
+
if 'Title' in df.columns and 'Abstract' in df.columns:
|
114 |
+
coldf = ['Abstract', 'Title']
|
115 |
+
elif 'Title' in df.columns:
|
116 |
+
coldf = ['Title']
|
117 |
+
elif 'Abstract' in df.columns:
|
118 |
+
coldf = ['Abstract']
|
119 |
+
else:
|
120 |
+
coldf = sorted(df.select_dtypes(include=['object']).columns.tolist())
|
121 |
+
|
122 |
+
MIN, MAX, GAP = get_minmax(df)
|
123 |
+
|
124 |
+
return df, coldf, MIN, MAX, GAP
|
125 |
+
|
126 |
+
@st.cache_data(ttl=3600)
|
127 |
+
def clean_data(df):
|
128 |
+
|
129 |
+
years = list(range(YEAR[0],YEAR[1]+1))
|
130 |
+
df = df.loc[df['Year'].isin(years)]
|
131 |
+
|
132 |
+
# Preprocess text
|
133 |
+
df['processed'] = df.apply(lambda row: preprocess_text(f"{row.get(col_name, '')}"), axis=1)
|
134 |
+
|
135 |
+
# Vectorize processed text
|
136 |
+
vectorizer = CountVectorizer(lowercase=False, tokenizer=lambda x: x.split())
|
137 |
+
X = vectorizer.fit_transform(df['processed'].tolist())
|
138 |
+
|
139 |
+
# Create DataFrame from the Document-Term Matrix (DTM)
|
140 |
+
dtm = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names_out(), index=df['Year'].values)
|
141 |
+
yearly_term_frequency = dtm.groupby(dtm.index).sum()
|
142 |
+
|
143 |
+
# User inputs for top words analysis and exclusions
|
144 |
+
excluded_words = [word.strip() for word in excluded_words_input.split(',')]
|
145 |
+
|
146 |
+
# Identify top words, excluding specified words
|
147 |
+
#top_words = [word for word in yearly_term_frequency.sum().nlargest(top_n).index if word not in excluded_words]
|
148 |
+
filtered_words = [word for word in yearly_term_frequency.columns if word not in excluded_words]
|
149 |
+
top_words = yearly_term_frequency[filtered_words].sum().nlargest(top_n).index.tolist()
|
150 |
+
|
151 |
+
return yearly_term_frequency, top_words
|
152 |
+
|
153 |
+
@st.cache_data(ttl=3600)
|
154 |
+
def apply_burst_detection(top_words, data):
|
155 |
+
all_bursts_list = []
|
156 |
+
|
157 |
+
start_year = int(data.index.min())
|
158 |
+
end_year = int(data.index.max())
|
159 |
+
all_years = range(start_year, end_year + 1)
|
160 |
+
|
161 |
+
continuous_years = pd.Series(index=all_years, data=0) # Start with a series of zeros for all years
|
162 |
+
|
163 |
+
years = continuous_years.index.tolist()
|
164 |
+
|
165 |
+
all_freq_data = pd.DataFrame(index=years)
|
166 |
+
|
167 |
+
for i, word in enumerate(top_words, start=1):
|
168 |
+
# Update with actual counts where available
|
169 |
+
word_counts = data[word].reindex(continuous_years.index, fill_value=0)
|
170 |
+
|
171 |
+
# Convert years and counts to lists for burst detection
|
172 |
+
r = continuous_years.index.tolist() # List of all years
|
173 |
+
r = np.array(r, dtype=int)
|
174 |
+
d = word_counts.values.tolist() # non-zero counts
|
175 |
+
d = np.array(d, dtype=float)
|
176 |
+
y = r.copy()
|
177 |
+
|
178 |
+
if len(r) > 0 and len(d) > 0:
|
179 |
+
n = len(r)
|
180 |
+
q, d, r, p = burst_detection(d, r, n, s=2.0, gamma=1.0, smooth_win=1)
|
181 |
+
bursts = enumerate_bursts(q, word)
|
182 |
+
bursts = burst_weights(bursts, r, d, p)
|
183 |
+
all_bursts_list.append(bursts)
|
184 |
+
|
185 |
+
freq_data = yearly_term_frequency[word].reindex(years, fill_value=0)
|
186 |
+
all_freq_data[word] = freq_data
|
187 |
+
|
188 |
+
all_bursts = pd.concat(all_bursts_list, ignore_index=True)
|
189 |
+
|
190 |
+
num_unique_labels = len(all_bursts['label'].unique())
|
191 |
+
|
192 |
+
num_rows = math.ceil(top_n / num_columns)
|
193 |
+
|
194 |
+
if running_total == "Running total":
|
195 |
+
all_freq_data = all_freq_data.cumsum()
|
196 |
+
|
197 |
+
return all_bursts, all_freq_data, num_unique_labels, num_rows
|
198 |
+
|
199 |
+
# Streamlit UI for file upload
|
200 |
+
uploaded_file = st.file_uploader('', type=['csv', 'txt'], on_change=reset_all)
|
201 |
+
|
202 |
+
if uploaded_file is not None:
|
203 |
+
try:
|
204 |
+
c1, c2, c3 = st.columns([4,4,2])
|
205 |
+
top_n = c1.number_input("Number of top words to analyze", min_value=1, value=9, step=1, on_change=reset_all)
|
206 |
+
num_columns = c2.number_input("Number of columns for visualization", min_value=1, value=3, step=1, on_change=reset_all)
|
207 |
+
running_total = c3.selectbox("Option for counting words",
|
208 |
+
("Running total", "By occurrences each year"), on_change=reset_all)
|
209 |
+
|
210 |
+
d1, d2 = st.columns([4,6])
|
211 |
+
df, coldf, MIN, MAX, GAP = load_data(uploaded_file)
|
212 |
+
col_name = d1.selectbox("Select column to analyze",
|
213 |
+
(coldf), on_change=reset_all)
|
214 |
+
excluded_words_input = d2.text_input("Words to exclude (comma-separated)", on_change=reset_all)
|
215 |
+
|
216 |
+
if (GAP != 0):
|
217 |
+
YEAR = st.slider('Year', min_value=MIN, max_value=MAX, value=(MIN, MAX), on_change=reset_all)
|
218 |
+
else:
|
219 |
+
st.write('You only have data in ', (MAX))
|
220 |
+
sys.exit(1)
|
221 |
+
|
222 |
+
yearly_term_frequency, top_words = clean_data(df)
|
223 |
+
|
224 |
+
bursts, freq_data, num_unique_labels, num_rows = apply_burst_detection(top_words, yearly_term_frequency)
|
225 |
+
|
226 |
+
tab1, tab2, tab3 = st.tabs(["📈 Generate visualization", "📃 Reference", "📓 Recommended Reading"])
|
227 |
+
|
228 |
+
with tab1:
|
229 |
+
if bursts.empty:
|
230 |
+
st.warning('We cannot detect any bursts', icon='⚠️')
|
231 |
+
|
232 |
+
else:
|
233 |
+
if num_unique_labels == top_n:
|
234 |
+
st.info(f'We detect a burst on {num_unique_labels} word(s)', icon="ℹ️")
|
235 |
+
elif num_unique_labels < top_n:
|
236 |
+
st.info(f'We only detect a burst on {num_unique_labels} word(s), which is {top_n - num_unique_labels} fewer than the top word(s)', icon="ℹ️")
|
237 |
+
|
238 |
+
fig = make_subplots(rows=num_rows, cols=num_columns, subplot_titles=freq_data.columns[:top_n])
|
239 |
+
|
240 |
+
row, col = 1, 1
|
241 |
+
for i, column in enumerate(freq_data.columns[:top_n]):
|
242 |
+
fig.add_trace(go.Scatter(
|
243 |
+
x=freq_data.index, y=freq_data[column], mode='lines+markers+text', name=column,
|
244 |
+
line_shape='linear',
|
245 |
+
hoverinfo='text',
|
246 |
+
hovertext=[f"Year: {index}<br>Frequency: {freq}" for index, freq in zip(freq_data.index, freq_data[column])],
|
247 |
+
text=freq_data[column],
|
248 |
+
textposition='top center'
|
249 |
+
), row=row, col=col)
|
250 |
+
|
251 |
+
# Add area charts
|
252 |
+
for _, row_data in bursts[bursts['label'] == column].iterrows():
|
253 |
+
x_values = freq_data.index[row_data['begin']:row_data['end']+1]
|
254 |
+
y_values = freq_data[column][row_data['begin']:row_data['end']+1]
|
255 |
+
|
256 |
+
#middle_y = sum(y_values) / len(y_values)
|
257 |
+
y_post = min(freq_data[column]) + 1 if running_total == "Running total" else sum(y_values) / len(y_values)
|
258 |
+
x_offset = 0.1
|
259 |
+
|
260 |
+
# Add area chart
|
261 |
+
fig.add_trace(go.Scatter(
|
262 |
+
x=x_values,
|
263 |
+
y=y_values,
|
264 |
+
fill='tozeroy', mode='lines', fillcolor='rgba(0,100,80,0.2)',
|
265 |
+
), row=row, col=col)
|
266 |
+
|
267 |
+
align_value = "left" if running_total == "Running total" else "center"
|
268 |
+
valign_value = "bottom" if running_total == "Running total" else "middle"
|
269 |
+
|
270 |
+
# Add annotation for weight at the bottom
|
271 |
+
fig.add_annotation(
|
272 |
+
x=x_values[0] + x_offset,
|
273 |
+
y=y_post,
|
274 |
+
text=f"Weight: {row_data['weight']:.2f}",
|
275 |
+
showarrow=False,
|
276 |
+
font=dict(
|
277 |
+
color="black",
|
278 |
+
size=10
|
279 |
+
),
|
280 |
+
align=align_value,
|
281 |
+
valign=valign_value,
|
282 |
+
textangle=270,
|
283 |
+
row=row, col=col
|
284 |
+
)
|
285 |
+
|
286 |
+
col += 1
|
287 |
+
if col > num_columns:
|
288 |
+
col = 1
|
289 |
+
row += 1
|
290 |
+
|
291 |
+
fig.update_layout(
|
292 |
+
title_text="Scattertext",
|
293 |
+
showlegend=False,
|
294 |
+
height=num_rows * 400
|
295 |
+
)
|
296 |
+
|
297 |
+
st.plotly_chart(fig, theme="streamlit", use_container_width=True)
|
298 |
+
|
299 |
+
with tab2:
|
300 |
+
st.markdown('**Kleinberg, J. (2002). Bursty and hierarchical structure in streams. Knowledge Discovery and Data Mining.** https://doi.org/10.1145/775047.775061')
|
301 |
+
|
302 |
+
with tab3:
|
303 |
+
st.markdown('**Li, M., Zheng, Z., & Yi, Q. (2024). The landscape of hot topics and research frontiers in Kawasaki disease: scientometric analysis. Heliyon, 10(8), e29680–e29680.** https://doi.org/10.1016/j.heliyon.2024.e29680')
|
304 |
+
st.markdown('**Domicián Máté, Ni Made Estiyanti and Novotny, A. (2024) ‘How to support innovative small firms? Bibliometric analysis and visualization of start-up incubation’, Journal of Innovation and Entrepreneurship, 13(1).** https://doi.org/10.1186/s13731-024-00361-z')
|
305 |
+
st.markdown('**Lamba, M., Madhusudhan, M. (2022). Burst Detection. In: Text Mining for Information Professionals. Springer, Cham.** https://doi.org/10.1007/978-3-030-85085-2_6')
|
306 |
+
|
307 |
+
except ValueError:
|
308 |
+
st.error("An error occurred", icon="⚠️")
|
309 |
+
sys.exit(1)
|