Spaces:
Running
Running
Create pages/1 Keywords Stem.py
Browse files- pages/1 Keywords Stem.py +203 -0
pages/1 Keywords Stem.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import re
|
5 |
+
import nltk
|
6 |
+
nltk.download('wordnet')
|
7 |
+
from nltk.stem import WordNetLemmatizer
|
8 |
+
nltk.download('stopwords')
|
9 |
+
from nltk.corpus import stopwords
|
10 |
+
from pprint import pprint
|
11 |
+
import pickle
|
12 |
+
import streamlit.components.v1 as components
|
13 |
+
from io import StringIO
|
14 |
+
from nltk.stem.snowball import SnowballStemmer
|
15 |
+
import csv
|
16 |
+
import sys
|
17 |
+
|
18 |
+
#===config===
|
19 |
+
st.set_page_config(
|
20 |
+
page_title="Coconut",
|
21 |
+
page_icon="π₯₯",
|
22 |
+
layout="wide"
|
23 |
+
)
|
24 |
+
st.header("Keywords Stem")
|
25 |
+
st.subheader('Put your file here...')
|
26 |
+
|
27 |
+
def reset_data():
|
28 |
+
st.cache_data.clear()
|
29 |
+
|
30 |
+
#===check filetype===
|
31 |
+
@st.cache_data(ttl=3600)
|
32 |
+
def get_ext(extype):
|
33 |
+
extype = uploaded_file.name
|
34 |
+
return extype
|
35 |
+
|
36 |
+
#===upload===
|
37 |
+
@st.cache_data(ttl=3600)
|
38 |
+
def upload(extype):
|
39 |
+
keywords = pd.read_csv(uploaded_file)
|
40 |
+
return keywords
|
41 |
+
|
42 |
+
@st.cache_data(ttl=3600)
|
43 |
+
def conv_txt(extype):
|
44 |
+
col_dict = {'TI': 'Title',
|
45 |
+
'SO': 'Source title',
|
46 |
+
'DE': 'Author Keywords',
|
47 |
+
'ID': 'Keywords Plus'}
|
48 |
+
keywords = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
|
49 |
+
keywords.rename(columns=col_dict, inplace=True)
|
50 |
+
return keywords
|
51 |
+
|
52 |
+
@st.cache_data(ttl=3600)
|
53 |
+
def rev_conv_txt(extype):
|
54 |
+
col_dict_rev = {'Title': 'TI',
|
55 |
+
'Source title': 'SO',
|
56 |
+
'Author Keywords': 'DE',
|
57 |
+
'Keywords Plus': 'ID'}
|
58 |
+
keywords.rename(columns=col_dict_rev, inplace=True)
|
59 |
+
return keywords
|
60 |
+
|
61 |
+
@st.cache_data(ttl=3600)
|
62 |
+
def get_data(extype):
|
63 |
+
list_of_column_key = list(keywords.columns)
|
64 |
+
list_of_column_key = [k for k in list_of_column_key if 'Keyword' in k]
|
65 |
+
return list_of_column_key
|
66 |
+
|
67 |
+
uploaded_file = st.file_uploader("Choose your a file", type=['csv','txt'], on_change=reset_data)
|
68 |
+
|
69 |
+
if uploaded_file is not None:
|
70 |
+
extype = get_ext(uploaded_file)
|
71 |
+
if extype.endswith('.csv'):
|
72 |
+
keywords = upload(extype)
|
73 |
+
|
74 |
+
elif extype.endswith('.txt'):
|
75 |
+
keywords = conv_txt(extype)
|
76 |
+
|
77 |
+
list_of_column_key = get_data(extype)
|
78 |
+
|
79 |
+
col1, col2 = st.columns(2)
|
80 |
+
with col1:
|
81 |
+
method = st.selectbox(
|
82 |
+
'Choose method',
|
83 |
+
('Stemming', 'Lemmatization'), on_change=reset_data)
|
84 |
+
with col2:
|
85 |
+
keyword = st.selectbox(
|
86 |
+
'Choose column',
|
87 |
+
(list_of_column_key), on_change=reset_data)
|
88 |
+
|
89 |
+
@st.cache_data(ttl=3600)
|
90 |
+
def clean_keyword(extype):
|
91 |
+
global keyword, keywords
|
92 |
+
try:
|
93 |
+
key = keywords[keyword]
|
94 |
+
except KeyError:
|
95 |
+
st.error('Error: Please check your Author/Index Keywords column.')
|
96 |
+
sys.exit(1)
|
97 |
+
keywords = keywords.replace(np.nan, '', regex=True)
|
98 |
+
keywords[keyword] = keywords[keyword].astype(str)
|
99 |
+
keywords[keyword] = keywords[keyword].map(lambda x: re.sub('-', ' ', x))
|
100 |
+
keywords[keyword] = keywords[keyword].map(lambda x: re.sub('; ', ' ; ', x))
|
101 |
+
keywords[keyword] = keywords[keyword].map(lambda x: x.lower())
|
102 |
+
|
103 |
+
#===Keywords list===
|
104 |
+
key = key.dropna()
|
105 |
+
key = pd.concat([key.str.split('; ', expand=True)], axis=1)
|
106 |
+
key = pd.Series(np.ravel(key)).dropna().drop_duplicates().sort_values().reset_index()
|
107 |
+
key[0] = key[0].map(lambda x: re.sub('-', ' ', x))
|
108 |
+
key['new']=key[0].map(lambda x: x.lower())
|
109 |
+
|
110 |
+
return keywords, key
|
111 |
+
|
112 |
+
#===stem/lem===
|
113 |
+
@st.cache_data(ttl=3600)
|
114 |
+
def Lemmatization(extype):
|
115 |
+
lemmatizer = WordNetLemmatizer()
|
116 |
+
def lemmatize_words(text):
|
117 |
+
words = text.split()
|
118 |
+
words = [lemmatizer.lemmatize(word) for word in words]
|
119 |
+
return ' '.join(words)
|
120 |
+
keywords[keyword] = keywords[keyword].apply(lemmatize_words)
|
121 |
+
key['new'] = key['new'].apply(lemmatize_words)
|
122 |
+
keywords[keyword] = keywords[keyword].map(lambda x: re.sub(' ; ', '; ', x))
|
123 |
+
return keywords, key
|
124 |
+
|
125 |
+
@st.cache_data(ttl=3600)
|
126 |
+
def Stemming(extype):
|
127 |
+
stemmer = SnowballStemmer("english")
|
128 |
+
def stem_words(text):
|
129 |
+
words = text.split()
|
130 |
+
words = [stemmer.stem(word) for word in words]
|
131 |
+
return ' '.join(words)
|
132 |
+
keywords[keyword] = keywords[keyword].apply(stem_words)
|
133 |
+
key['new'] = key['new'].apply(stem_words)
|
134 |
+
keywords[keyword] = keywords[keyword].map(lambda x: re.sub(' ; ', '; ', x))
|
135 |
+
return keywords, key
|
136 |
+
|
137 |
+
keywords, key = clean_keyword(extype)
|
138 |
+
|
139 |
+
if method is 'Lemmatization':
|
140 |
+
keywords, key = Lemmatization(extype)
|
141 |
+
else:
|
142 |
+
keywords, key = Stemming(extype)
|
143 |
+
|
144 |
+
st.write('Congratulations! π€© You choose',keyword ,'with',method,'method. Now, you can easily download the result by clicking the button below')
|
145 |
+
st.divider()
|
146 |
+
|
147 |
+
#===show & download csv===
|
148 |
+
tab1, tab2, tab3, tab4 = st.tabs(["π₯ Result", "π₯ List of Keywords", "π Reference", "π Recommended Reading"])
|
149 |
+
|
150 |
+
with tab1:
|
151 |
+
st.dataframe(keywords, use_container_width=True)
|
152 |
+
@st.cache_data(ttl=3600)
|
153 |
+
def convert_df(extype):
|
154 |
+
return keywords.to_csv(index=False).encode('utf-8')
|
155 |
+
|
156 |
+
@st.cache_data(ttl=3600)
|
157 |
+
def convert_txt(extype):
|
158 |
+
return keywords.to_csv(index=False, sep='\t', lineterminator='\r').encode('utf-8')
|
159 |
+
|
160 |
+
if extype.endswith('.csv'):
|
161 |
+
csv = convert_df(extype)
|
162 |
+
st.download_button(
|
163 |
+
"Press to download result π",
|
164 |
+
csv,
|
165 |
+
"scopus.csv",
|
166 |
+
"text/csv")
|
167 |
+
|
168 |
+
elif extype.endswith('.txt'):
|
169 |
+
keywords = rev_conv_txt(extype)
|
170 |
+
txt = convert_txt(extype)
|
171 |
+
st.download_button(
|
172 |
+
"Press to download result π",
|
173 |
+
txt,
|
174 |
+
"savedrecs.txt",
|
175 |
+
"text/csv")
|
176 |
+
|
177 |
+
with tab2:
|
178 |
+
@st.cache_data(ttl=3600)
|
179 |
+
def table_keyword(extype):
|
180 |
+
keytab = key.drop(['index'], axis=1).rename(columns={0: 'old'})
|
181 |
+
return keytab
|
182 |
+
keytab = table_keyword(extype)
|
183 |
+
st.dataframe(keytab, use_container_width=True)
|
184 |
+
|
185 |
+
@st.cache_data(ttl=3600)
|
186 |
+
def convert_dfs(extype):
|
187 |
+
return key.to_csv(index=False).encode('utf-8')
|
188 |
+
|
189 |
+
csv = convert_dfs(extype)
|
190 |
+
|
191 |
+
st.download_button(
|
192 |
+
"Press to download keywords π",
|
193 |
+
csv,
|
194 |
+
"keywords.csv",
|
195 |
+
"text/csv")
|
196 |
+
|
197 |
+
with tab3:
|
198 |
+
st.markdown('**Santosa, F. A. (2022). Prior steps into knowledge mapping: Text mining application and comparison. Issues in Science and Technology Librarianship, 102.** https://doi.org/10.29173/istl2736')
|
199 |
+
|
200 |
+
with tab4:
|
201 |
+
st.markdown('**Beri, A. (2021, January 27). Stemming vs Lemmatization. Medium.** https://towardsdatascience.com/stemming-vs-lemmatization-2daddabcb221')
|
202 |
+
st.markdown('**Khyani, D., Siddhartha B S, Niveditha N M, & Divya B M. (2020). An Interpretation of Lemmatization and Stemming in Natural Language Processing. Journal of University of Shanghai for Science and Technology , 22(10), 350β357.** https://jusst.org/an-interpretation-of-lemmatization-and-stemming-in-natural-language-processing/')
|
203 |
+
st.markdown('**Lamba, M., & Madhusudhan, M. (2021, July 31). Text Pre-Processing. Text Mining for Information Professionals, 79β103.** https://doi.org/10.1007/978-3-030-85085-2_3')
|