DAI-Demo / app.py
falba's picture
Update app.py
5583b9b verified
raw
history blame
1.21 kB
import torch
from transformers import ViTForImageClassification, ViTImageProcessor
from datasets import load_dataset
import gradio as gr
eval = load_dataset("Marxulia/asl_sign_languages_alphabets_v02", split="train")
eval = eval.rename_column('label', 'labels')
id2label = {str(i): lab for i, lab in enumerate(eval.features["labels"].names)}
trained_model = ViTForImageClassification.from_pretrained("falba/google-vit-base-ASL")
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
with gr.Blocks() as demo:
gallery = gr.Gallery([i for i in eval['image']])
statement = gr.Label()
def on_select(evt: gr.SelectData): # SelectData is a subclass of EventData
chosen_index = evt.index
chosen_image = eval['image'][chosen_index]
inputs = processor(images=chosen_image, return_tensors="pt")
outputs = trained_model(**inputs)
predicted_label_id = outputs.logits.argmax(-1).item()
predicted_label = id2label[str(predicted_label_id)]
actual_label = eval['labels'][chosen_index]
return f"Actual Label: {id2label[str(actual_label)]} | Predicted label: {predicted_label}"
gallery.select(on_select, None, statement)
demo.launch()