|
import os |
|
from moviepy.editor import VideoFileClip |
|
import random |
|
from PIL import Image |
|
import numpy as np |
|
|
|
def crop_and_resize_video(input_video_path, output_folder, clip_duration=None, width=None, height=None, start_time=None, end_time=None, n_frames=16, center_crop=False, x_offset=0, y_offset=0, longest_to_width=False): |
|
video = VideoFileClip(input_video_path) |
|
|
|
|
|
if clip_duration is not None: |
|
if start_time is not None: |
|
start_time = float(start_time) |
|
end_time = start_time + clip_duration |
|
elif end_time is not None: |
|
end_time = float(end_time) |
|
start_time = end_time - clip_duration |
|
else: |
|
|
|
video_duration = video.duration |
|
if video_duration <= clip_duration: |
|
print(f"Skipping {input_video_path}: duration is less than or equal to the clip duration.") |
|
return |
|
max_start_time = video_duration - clip_duration |
|
start_time = random.uniform(0, max_start_time) |
|
end_time = start_time + clip_duration |
|
elif start_time is not None and end_time is not None: |
|
start_time = float(start_time) |
|
end_time = float(end_time) |
|
clip_duration = int(end_time - start_time) |
|
else: |
|
raise ValueError("Either clip_duration must be provided, or both start_time and end_time must be specified.") |
|
|
|
|
|
cropped_video = video.subclip(start_time, end_time) |
|
|
|
|
|
if center_crop: |
|
|
|
video_width, video_height = cropped_video.size |
|
scale_width = video_width / width |
|
scale_height = video_height / height |
|
if longest_to_width: |
|
scale = max(scale_width, scale_height) |
|
else: |
|
scale = min(scale_width, scale_height) |
|
|
|
|
|
|
|
new_width = int(video_width / scale) |
|
new_height = int(video_height / scale) |
|
resized_video = cropped_video.resize(newsize=(new_width, new_height)) |
|
print(f"Resized video to ({new_width}, {new_height})") |
|
|
|
|
|
|
|
offset_x = int(((x_offset + 1) / 2) * (new_width - width)) |
|
offset_y = int(((y_offset + 1) / 2) * (new_height - height)) |
|
|
|
|
|
offset_x = max(0, min(new_width - width, offset_x)) |
|
offset_y = max(0, min(new_height - height, offset_y)) |
|
|
|
|
|
cropped_video = resized_video.crop(x1=offset_x, y1=offset_y, width=width, height=height) |
|
elif width and height: |
|
|
|
cropped_video = cropped_video.resize(newsize=(width, height)) |
|
|
|
|
|
|
|
fps = n_frames // clip_duration |
|
final_video = cropped_video.set_fps(fps) |
|
|
|
|
|
if not os.path.exists(output_folder): |
|
os.makedirs(output_folder) |
|
filename = os.path.basename(input_video_path) |
|
output_video_path = os.path.join(output_folder, filename) |
|
|
|
|
|
final_video.write_videofile(output_video_path, codec='libx264', audio_codec='aac', fps=fps) |
|
print(f"Processed {input_video_path}, saved to {output_video_path}") |
|
return output_video_path |
|
|
|
|
|
def infer_video_prompt(model, video_path, output_dir, prompt, prompt_type="instruct", force_512=False, seed=42, negative_prompt="", overwrite=False): |
|
""" |
|
Processes videos from the input directory, resizes them to 512x512 before feeding into the model by first frame, |
|
and saves the processed video back to its original size in the output directory. |
|
|
|
Args: |
|
model: The video editing model. |
|
input_dir (str): Path to the directory containing input videos. |
|
output_dir (str): Path to the directory where processed videos will be saved. |
|
prompt (str): Instruction prompt for video editing. |
|
""" |
|
|
|
|
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
video_clip = VideoFileClip(video_path) |
|
video_filename = os.path.basename(video_path) |
|
|
|
|
|
|
|
|
|
final_output_dir = output_dir |
|
if not os.path.exists(final_output_dir): |
|
os.makedirs(final_output_dir) |
|
|
|
result_path = os.path.join(final_output_dir, prompt + ".png") |
|
|
|
|
|
if os.path.exists(result_path) and overwrite is False: |
|
print(f"Result already exists: {result_path}") |
|
return |
|
|
|
def process_frame(image): |
|
pil_image = Image.fromarray(image) |
|
if force_512: |
|
pil_image = pil_image.resize((512, 512), Image.LANCZOS) |
|
if prompt_type == "instruct": |
|
result = model.infer_one_image(pil_image, instruct_prompt=prompt, seed=seed, negative_prompt=negative_prompt) |
|
else: |
|
result = model.infer_one_image(pil_image, target_prompt=prompt, seed=seed, negative_prompt=negative_prompt) |
|
if force_512: |
|
result = result.resize(video_clip.size, Image.LANCZOS) |
|
return np.array(result) |
|
|
|
|
|
first_frame = video_clip.get_frame(0) |
|
processed_frame = process_frame(first_frame) |
|
|
|
|
|
|
|
Image.fromarray(processed_frame).save(result_path) |
|
print(f"Processed and saved the first frame: {result_path}") |
|
return result_path |
|
|
|
def infer_video_style(model, video_path, output_dir, style_image, prompt, force_512=False, seed=42, negative_prompt="", overwrite=False): |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
video_clip = VideoFileClip(video_path) |
|
video_filename = os.path.basename(video_path) |
|
final_output_dir = output_dir |
|
if not os.path.exists(final_output_dir): |
|
os.makedirs(final_output_dir) |
|
|
|
result_path = os.path.join(final_output_dir, "style" + ".png") |
|
if os.path.exists(result_path) and overwrite is False: |
|
print(f"Result already exists: {result_path}") |
|
return |
|
def process_frame(image): |
|
pil_image = Image.fromarray(image) |
|
if force_512: |
|
pil_image = pil_image.resize((512, 512), Image.LANCZOS) |
|
result = model.infer_one_image(pil_image, |
|
style_image=style_image, |
|
prompt=prompt, |
|
seed=seed, |
|
negative_prompt=negative_prompt) |
|
if force_512: |
|
result = result.resize(video_clip.size, Image.LANCZOS) |
|
return np.array(result) |
|
|
|
first_frame = video_clip.get_frame(0) |
|
processed_frame = process_frame(first_frame) |
|
Image.fromarray(processed_frame).save(result_path) |
|
print(f"Processed and saved the first frame: {result_path}") |
|
return result_path |