File size: 4,103 Bytes
7c3ff16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import json
import random

import torch
import torchvision.transforms as transforms
from decord import VideoReader
from PIL import Image
from torch.utils.data import Dataset
from transformers import CLIPImageProcessor


class HumanDanceDataset(Dataset):
    def __init__(
        self,
        img_size,
        img_scale=(1.0, 1.0),
        img_ratio=(0.9, 1.0),
        drop_ratio=0.1,
        data_meta_paths=["./data/fahsion_meta.json"],
        sample_margin=30,
    ):
        super().__init__()

        self.img_size = img_size
        self.img_scale = img_scale
        self.img_ratio = img_ratio
        self.sample_margin = sample_margin

        # -----
        # vid_meta format:
        # [{'video_path': , 'kps_path': , 'other':},
        #  {'video_path': , 'kps_path': , 'other':}]
        # -----
        vid_meta = []
        for data_meta_path in data_meta_paths:
            vid_meta.extend(json.load(open(data_meta_path, "r")))
        self.vid_meta = vid_meta

        self.clip_image_processor = CLIPImageProcessor()

        self.transform = transforms.Compose(
            [
                # transforms.RandomResizedCrop(
                #     self.img_size,
                #     scale=self.img_scale,
                #     ratio=self.img_ratio,
                #     interpolation=transforms.InterpolationMode.BILINEAR,
                # ),
                transforms.Resize(
                    self.img_size,
                ),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

        self.cond_transform = transforms.Compose(
            [
                # transforms.RandomResizedCrop(
                #     self.img_size,
                #     scale=self.img_scale,
                #     ratio=self.img_ratio,
                #     interpolation=transforms.InterpolationMode.BILINEAR,
                # ),
                transforms.Resize(
                    self.img_size,
                ),
                transforms.ToTensor(),
            ]
        )

        self.drop_ratio = drop_ratio

    def augmentation(self, image, transform, state=None):
        if state is not None:
            torch.set_rng_state(state)
        return transform(image)

    def __getitem__(self, index):
        video_meta = self.vid_meta[index]
        video_path = video_meta["video_path"]
        kps_path = video_meta["kps_path"]

        video_reader = VideoReader(video_path)
        kps_reader = VideoReader(kps_path)

        assert len(video_reader) == len(
            kps_reader
        ), f"{len(video_reader) = } != {len(kps_reader) = } in {video_path}"

        video_length = len(video_reader)

        margin = min(self.sample_margin, video_length)

        ref_img_idx = random.randint(0, video_length - 1)
        if ref_img_idx + margin < video_length:
            tgt_img_idx = random.randint(ref_img_idx + margin, video_length - 1)
        elif ref_img_idx - margin > 0:
            tgt_img_idx = random.randint(0, ref_img_idx - margin)
        else:
            tgt_img_idx = random.randint(0, video_length - 1)

        ref_img = video_reader[ref_img_idx]
        ref_img_pil = Image.fromarray(ref_img.asnumpy())
        tgt_img = video_reader[tgt_img_idx]
        tgt_img_pil = Image.fromarray(tgt_img.asnumpy())

        tgt_pose = kps_reader[tgt_img_idx]
        tgt_pose_pil = Image.fromarray(tgt_pose.asnumpy())

        state = torch.get_rng_state()
        tgt_img = self.augmentation(tgt_img_pil, self.transform, state)
        tgt_pose_img = self.augmentation(tgt_pose_pil, self.cond_transform, state)
        ref_img_vae = self.augmentation(ref_img_pil, self.transform, state)
        clip_image = self.clip_image_processor(
            images=ref_img_pil, return_tensors="pt"
        ).pixel_values[0]

        sample = dict(
            video_dir=video_path,
            img=tgt_img,
            tgt_pose=tgt_pose_img,
            ref_img=ref_img_vae,
            clip_images=clip_image,
        )

        return sample

    def __len__(self):
        return len(self.vid_meta)