jhj0517
initial commit
0a9bdfb
raw
history blame
4.27 kB
import math
import numpy as np
import cv2
eps = 0.01
def smart_width(d):
if d<5:
return 1
elif d<10:
return 2
elif d<20:
return 3
elif d<40:
return 4
elif d<80:
return 5
elif d<160:
return 6
elif d<320:
return 7
else:
return 8
def draw_bodypose(canvas, candidate, subset):
H, W, C = canvas.shape
candidate = np.array(candidate)
subset = np.array(subset)
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
Y = candidate[index.astype(int), 0] * float(W)
X = candidate[index.astype(int), 1] * float(H)
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
width = smart_width(length)
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), width), int(angle), 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, colors[i])
canvas = (canvas * 0.6).astype(np.uint8)
for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
x = int(x * W)
y = int(y * H)
radius = 4
cv2.circle(canvas, (int(x), int(y)), radius, colors[i], thickness=-1)
return canvas
def draw_handpose(canvas, all_hand_peaks):
import matplotlib
H, W, C = canvas.shape
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
# (person_number*2, 21, 2)
for i in range(len(all_hand_peaks)):
peaks = all_hand_peaks[i]
peaks = np.array(peaks)
for ie, e in enumerate(edges):
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
x1 = int(x1 * W)
y1 = int(y1 * H)
x2 = int(x2 * W)
y2 = int(y2 * H)
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
width = smart_width(length)
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=width)
for _, keyponit in enumerate(peaks):
x, y = keyponit
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
radius = 3
cv2.circle(canvas, (x, y), radius, (0, 0, 255), thickness=-1)
return canvas
def draw_facepose(canvas, all_lmks):
H, W, C = canvas.shape
for lmks in all_lmks:
lmks = np.array(lmks)
for lmk in lmks:
x, y = lmk
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
radius = 3
cv2.circle(canvas, (x, y), radius, (255, 255, 255), thickness=-1)
return canvas
# Calculate the resolution
def size_calculate(h, w, resolution):
H = float(h)
W = float(w)
# resize the short edge to the resolution
k = float(resolution) / min(H, W) # short edge
H *= k
W *= k
# resize to the nearest integer multiple of 64
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
return H, W
def warpAffine_kps(kps, M):
a = M[:,:2]
t = M[:,2]
kps = np.dot(kps, a.T) + t
return kps