musepose / pose /script /dwpose.py
jhj0517
initial commit
0a9bdfb
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import cv2
import torch
import numpy as np
from PIL import Image
import pose.script.util as util
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def draw_pose(pose, H, W, draw_face):
bodies = pose['bodies']
faces = pose['faces']
hands = pose['hands']
candidate = bodies['candidate']
subset = bodies['subset']
# only the most significant person
faces = pose['faces'][:1]
hands = pose['hands'][:2]
candidate = bodies['candidate'][:18]
subset = bodies['subset'][:1]
# draw
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
canvas = util.draw_bodypose(canvas, candidate, subset)
canvas = util.draw_handpose(canvas, hands)
if draw_face == True:
canvas = util.draw_facepose(canvas, faces)
return canvas
class DWposeDetector:
def __init__(self, det_config=None, det_ckpt=None, pose_config=None, pose_ckpt=None, device="cpu", keypoints_only=False):
from pose.script.wholebody import Wholebody
self.pose_estimation = Wholebody(det_config, det_ckpt, pose_config, pose_ckpt, device)
self.keypoints_only = keypoints_only
def to(self, device):
self.pose_estimation.to(device)
return self
'''
detect_resolution: 短边resize到多少 这是 draw pose 时的原始渲染分辨率。建议1024
image_resolution: 短边resize到多少 这是 save pose 时的文件分辨率。建议768
实际检测分辨率:
yolox: (640, 640)
dwpose:(288, 384)
'''
def __call__(self, input_image, detect_resolution=1024, image_resolution=768, output_type="pil", **kwargs):
input_image = cv2.cvtColor(np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR)
# cv2.imshow('', input_image)
# cv2.waitKey(0)
input_image = HWC3(input_image)
input_image = resize_image(input_image, detect_resolution)
H, W, C = input_image.shape
with torch.no_grad():
candidate, subset = self.pose_estimation(input_image)
nums, keys, locs = candidate.shape
candidate[..., 0] /= float(W)
candidate[..., 1] /= float(H)
body = candidate[:,:18].copy()
body = body.reshape(nums*18, locs)
score = subset[:,:18]
for i in range(len(score)):
for j in range(len(score[i])):
if score[i][j] > 0.3:
score[i][j] = int(18*i+j)
else:
score[i][j] = -1
un_visible = subset<0.3
candidate[un_visible] = -1
foot = candidate[:,18:24]
faces = candidate[:,24:92]
hands = candidate[:,92:113]
hands = np.vstack([hands, candidate[:,113:]])
bodies = dict(candidate=body, subset=score)
pose = dict(bodies=bodies, hands=hands, faces=faces)
if self.keypoints_only==True:
return pose
else:
detected_map = draw_pose(pose, H, W, draw_face=False)
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
# cv2.imshow('detected_map',detected_map)
# cv2.waitKey(0)
if output_type == "pil":
detected_map = cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB)
detected_map = Image.fromarray(detected_map)
return detected_map, pose