|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" |
|
|
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
import pose.script.util as util |
|
|
|
def resize_image(input_image, resolution): |
|
H, W, C = input_image.shape |
|
H = float(H) |
|
W = float(W) |
|
k = float(resolution) / min(H, W) |
|
H *= k |
|
W *= k |
|
H = int(np.round(H / 64.0)) * 64 |
|
W = int(np.round(W / 64.0)) * 64 |
|
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) |
|
return img |
|
|
|
def HWC3(x): |
|
assert x.dtype == np.uint8 |
|
if x.ndim == 2: |
|
x = x[:, :, None] |
|
assert x.ndim == 3 |
|
H, W, C = x.shape |
|
assert C == 1 or C == 3 or C == 4 |
|
if C == 3: |
|
return x |
|
if C == 1: |
|
return np.concatenate([x, x, x], axis=2) |
|
if C == 4: |
|
color = x[:, :, 0:3].astype(np.float32) |
|
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 |
|
y = color * alpha + 255.0 * (1.0 - alpha) |
|
y = y.clip(0, 255).astype(np.uint8) |
|
return y |
|
|
|
def draw_pose(pose, H, W, draw_face): |
|
bodies = pose['bodies'] |
|
faces = pose['faces'] |
|
hands = pose['hands'] |
|
candidate = bodies['candidate'] |
|
subset = bodies['subset'] |
|
|
|
|
|
faces = pose['faces'][:1] |
|
hands = pose['hands'][:2] |
|
candidate = bodies['candidate'][:18] |
|
subset = bodies['subset'][:1] |
|
|
|
|
|
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) |
|
canvas = util.draw_bodypose(canvas, candidate, subset) |
|
canvas = util.draw_handpose(canvas, hands) |
|
if draw_face == True: |
|
canvas = util.draw_facepose(canvas, faces) |
|
|
|
return canvas |
|
|
|
class DWposeDetector: |
|
def __init__(self, det_config=None, det_ckpt=None, pose_config=None, pose_ckpt=None, device="cpu", keypoints_only=False): |
|
from pose.script.wholebody import Wholebody |
|
|
|
self.pose_estimation = Wholebody(det_config, det_ckpt, pose_config, pose_ckpt, device) |
|
self.keypoints_only = keypoints_only |
|
def to(self, device): |
|
self.pose_estimation.to(device) |
|
return self |
|
''' |
|
detect_resolution: 短边resize到多少 这是 draw pose 时的原始渲染分辨率。建议1024 |
|
image_resolution: 短边resize到多少 这是 save pose 时的文件分辨率。建议768 |
|
|
|
实际检测分辨率: |
|
yolox: (640, 640) |
|
dwpose:(288, 384) |
|
''' |
|
|
|
def __call__(self, input_image, detect_resolution=1024, image_resolution=768, output_type="pil", **kwargs): |
|
|
|
input_image = cv2.cvtColor(np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
H, W, C = input_image.shape |
|
|
|
with torch.no_grad(): |
|
candidate, subset = self.pose_estimation(input_image) |
|
nums, keys, locs = candidate.shape |
|
candidate[..., 0] /= float(W) |
|
candidate[..., 1] /= float(H) |
|
body = candidate[:,:18].copy() |
|
body = body.reshape(nums*18, locs) |
|
score = subset[:,:18] |
|
|
|
for i in range(len(score)): |
|
for j in range(len(score[i])): |
|
if score[i][j] > 0.3: |
|
score[i][j] = int(18*i+j) |
|
else: |
|
score[i][j] = -1 |
|
|
|
un_visible = subset<0.3 |
|
candidate[un_visible] = -1 |
|
|
|
foot = candidate[:,18:24] |
|
|
|
faces = candidate[:,24:92] |
|
|
|
hands = candidate[:,92:113] |
|
hands = np.vstack([hands, candidate[:,113:]]) |
|
|
|
bodies = dict(candidate=body, subset=score) |
|
pose = dict(bodies=bodies, hands=hands, faces=faces) |
|
|
|
if self.keypoints_only==True: |
|
return pose |
|
else: |
|
detected_map = draw_pose(pose, H, W, draw_face=False) |
|
detected_map = HWC3(detected_map) |
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
|
|
if output_type == "pil": |
|
detected_map = cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB) |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map, pose |
|
|
|
|