Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,973 Bytes
a64b7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from basicsr.utils.registry import ARCH_REGISTRY
class SeqConv3x3(nn.Module):
"""The re-parameterizable block used in the ECBSR architecture.
``Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices``
Reference: https://github.com/xindongzhang/ECBSR
Args:
seq_type (str): Sequence type, option: conv1x1-conv3x3 | conv1x1-sobelx | conv1x1-sobely | conv1x1-laplacian.
in_channels (int): Channel number of input.
out_channels (int): Channel number of output.
depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1.
"""
def __init__(self, seq_type, in_channels, out_channels, depth_multiplier=1):
super(SeqConv3x3, self).__init__()
self.seq_type = seq_type
self.in_channels = in_channels
self.out_channels = out_channels
if self.seq_type == 'conv1x1-conv3x3':
self.mid_planes = int(out_channels * depth_multiplier)
conv0 = torch.nn.Conv2d(self.in_channels, self.mid_planes, kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
conv1 = torch.nn.Conv2d(self.mid_planes, self.out_channels, kernel_size=3)
self.k1 = conv1.weight
self.b1 = conv1.bias
elif self.seq_type == 'conv1x1-sobelx':
conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
# init scale and bias
scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
self.scale = nn.Parameter(scale)
bias = torch.randn(self.out_channels) * 1e-3
bias = torch.reshape(bias, (self.out_channels, ))
self.bias = nn.Parameter(bias)
# init mask
self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
for i in range(self.out_channels):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 1, 0] = 2.0
self.mask[i, 0, 2, 0] = 1.0
self.mask[i, 0, 0, 2] = -1.0
self.mask[i, 0, 1, 2] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.seq_type == 'conv1x1-sobely':
conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
# init scale and bias
scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_channels) * 1e-3
bias = torch.reshape(bias, (self.out_channels, ))
self.bias = nn.Parameter(torch.FloatTensor(bias))
# init mask
self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
for i in range(self.out_channels):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 0, 1] = 2.0
self.mask[i, 0, 0, 2] = 1.0
self.mask[i, 0, 2, 0] = -1.0
self.mask[i, 0, 2, 1] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.seq_type == 'conv1x1-laplacian':
conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
# init scale and bias
scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
self.scale = nn.Parameter(torch.FloatTensor(scale))
bias = torch.randn(self.out_channels) * 1e-3
bias = torch.reshape(bias, (self.out_channels, ))
self.bias = nn.Parameter(torch.FloatTensor(bias))
# init mask
self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
for i in range(self.out_channels):
self.mask[i, 0, 0, 1] = 1.0
self.mask[i, 0, 1, 0] = 1.0
self.mask[i, 0, 1, 2] = 1.0
self.mask[i, 0, 2, 1] = 1.0
self.mask[i, 0, 1, 1] = -4.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
else:
raise ValueError('The type of seqconv is not supported!')
def forward(self, x):
if self.seq_type == 'conv1x1-conv3x3':
# conv-1x1
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
# explicitly padding with bias
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
# conv-3x3
y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1)
else:
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
# explicitly padding with bias
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
# conv-3x3
y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=self.bias, stride=1, groups=self.out_channels)
return y1
def rep_params(self):
device = self.k0.get_device()
if device < 0:
device = None
if self.seq_type == 'conv1x1-conv3x3':
# re-param conv kernel
rep_weight = F.conv2d(input=self.k1, weight=self.k0.permute(1, 0, 2, 3))
# re-param conv bias
rep_bias = torch.ones(1, self.mid_planes, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
rep_bias = F.conv2d(input=rep_bias, weight=self.k1).view(-1, ) + self.b1
else:
tmp = self.scale * self.mask
k1 = torch.zeros((self.out_channels, self.out_channels, 3, 3), device=device)
for i in range(self.out_channels):
k1[i, i, :, :] = tmp[i, 0, :, :]
b1 = self.bias
# re-param conv kernel
rep_weight = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3))
# re-param conv bias
rep_bias = torch.ones(1, self.out_channels, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
rep_bias = F.conv2d(input=rep_bias, weight=k1).view(-1, ) + b1
return rep_weight, rep_bias
class ECB(nn.Module):
"""The ECB block used in the ECBSR architecture.
Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
Ref git repo: https://github.com/xindongzhang/ECBSR
Args:
in_channels (int): Channel number of input.
out_channels (int): Channel number of output.
depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1.
act_type (str): Activation type. Option: prelu | relu | rrelu | softplus | linear. Default: prelu.
with_idt (bool): Whether to use identity connection. Default: False.
"""
def __init__(self, in_channels, out_channels, depth_multiplier, act_type='prelu', with_idt=False):
super(ECB, self).__init__()
self.depth_multiplier = depth_multiplier
self.in_channels = in_channels
self.out_channels = out_channels
self.act_type = act_type
if with_idt and (self.in_channels == self.out_channels):
self.with_idt = True
else:
self.with_idt = False
self.conv3x3 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=3, padding=1)
self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.in_channels, self.out_channels, self.depth_multiplier)
self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.in_channels, self.out_channels)
self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.in_channels, self.out_channels)
self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.in_channels, self.out_channels)
if self.act_type == 'prelu':
self.act = nn.PReLU(num_parameters=self.out_channels)
elif self.act_type == 'relu':
self.act = nn.ReLU(inplace=True)
elif self.act_type == 'rrelu':
self.act = nn.RReLU(lower=-0.05, upper=0.05)
elif self.act_type == 'softplus':
self.act = nn.Softplus()
elif self.act_type == 'linear':
pass
else:
raise ValueError('The type of activation if not support!')
def forward(self, x):
if self.training:
y = self.conv3x3(x) + self.conv1x1_3x3(x) + self.conv1x1_sbx(x) + self.conv1x1_sby(x) + self.conv1x1_lpl(x)
if self.with_idt:
y += x
else:
rep_weight, rep_bias = self.rep_params()
y = F.conv2d(input=x, weight=rep_weight, bias=rep_bias, stride=1, padding=1)
if self.act_type != 'linear':
y = self.act(y)
return y
def rep_params(self):
weight0, bias0 = self.conv3x3.weight, self.conv3x3.bias
weight1, bias1 = self.conv1x1_3x3.rep_params()
weight2, bias2 = self.conv1x1_sbx.rep_params()
weight3, bias3 = self.conv1x1_sby.rep_params()
weight4, bias4 = self.conv1x1_lpl.rep_params()
rep_weight, rep_bias = (weight0 + weight1 + weight2 + weight3 + weight4), (
bias0 + bias1 + bias2 + bias3 + bias4)
if self.with_idt:
device = rep_weight.get_device()
if device < 0:
device = None
weight_idt = torch.zeros(self.out_channels, self.out_channels, 3, 3, device=device)
for i in range(self.out_channels):
weight_idt[i, i, 1, 1] = 1.0
bias_idt = 0.0
rep_weight, rep_bias = rep_weight + weight_idt, rep_bias + bias_idt
return rep_weight, rep_bias
@ARCH_REGISTRY.register()
class ECBSR(nn.Module):
"""ECBSR architecture.
Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
Ref git repo: https://github.com/xindongzhang/ECBSR
Args:
num_in_ch (int): Channel number of inputs.
num_out_ch (int): Channel number of outputs.
num_block (int): Block number in the trunk network.
num_channel (int): Channel number.
with_idt (bool): Whether use identity in convolution layers.
act_type (str): Activation type.
scale (int): Upsampling factor.
"""
def __init__(self, num_in_ch, num_out_ch, num_block, num_channel, with_idt, act_type, scale):
super(ECBSR, self).__init__()
self.num_in_ch = num_in_ch
self.scale = scale
backbone = []
backbone += [ECB(num_in_ch, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)]
for _ in range(num_block):
backbone += [ECB(num_channel, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)]
backbone += [
ECB(num_channel, num_out_ch * scale * scale, depth_multiplier=2.0, act_type='linear', with_idt=with_idt)
]
self.backbone = nn.Sequential(*backbone)
self.upsampler = nn.PixelShuffle(scale)
def forward(self, x):
if self.num_in_ch > 1:
shortcut = torch.repeat_interleave(x, self.scale * self.scale, dim=1)
else:
shortcut = x # will repeat the input in the channel dimension (repeat scale * scale times)
y = self.backbone(x) + shortcut
y = self.upsampler(y)
return y
|