Spaces:
Running
on
Zero
Running
on
Zero
# Midas Depth Estimation | |
# From https://github.com/isl-org/MiDaS | |
# MIT LICENSE | |
import cv2 | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from .api import MiDaSInference | |
class MidasDetector: | |
def __init__(self): | |
self.model = MiDaSInference(model_type="dpt_hybrid").cuda() | |
self.rng = np.random.RandomState(0) | |
def __call__(self, input_image): | |
assert input_image.ndim == 3 | |
image_depth = input_image | |
with torch.no_grad(): | |
image_depth = torch.from_numpy(image_depth).float().cuda() | |
image_depth = image_depth / 127.5 - 1.0 | |
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') | |
depth = self.model(image_depth)[0] | |
depth -= torch.min(depth) | |
depth /= torch.max(depth) | |
depth = depth.cpu().numpy() | |
depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) | |
return depth_image | |