File size: 13,437 Bytes
07c6a04
374c3a9
 
 
07c6a04
 
 
 
 
 
374c3a9
 
 
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374c3a9
07c6a04
 
 
 
 
 
 
efc27db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efc27db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c6a04
 
 
 
 
 
 
 
 
 
 
efc27db
 
 
 
 
07c6a04
 
 
 
 
 
 
 
9b08739
 
 
07c6a04
9b08739
 
 
 
07c6a04
 
 
 
 
374c3a9
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efc27db
 
 
 
 
 
 
 
 
 
 
 
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efc27db
 
 
 
 
 
 
 
 
 
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
efc27db
 
 
 
07c6a04
374c3a9
9b08739
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os

os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), ".tmp_outputs")

import torch
from openai import OpenAI
from time import time
import tempfile
import uuid
import logging
import gradio as gr
from videosys import CogVideoConfig, VideoSysEngine
from videosys.models.cogvideo.pipeline import CogVideoPABConfig

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

dtype = torch.bfloat16
sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.

For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
There are a few rules to follow:

You will only ever output a single video description per user request.

When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions.
Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user.

Video descriptions must have the same num of words as examples below. Extra words will be ignored.
"""

def convert_prompt(prompt: str, retry_times: int = 3) -> str:
    if not os.environ.get("OPENAI_API_KEY"):
        return prompt
    client = OpenAI()
    text = prompt.strip()

    for i in range(retry_times):
        response = client.chat.completions.create(
            messages=[
                {"role": "system", "content": sys_prompt},
                {
                    "role": "user",
                    "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "a girl is on the beach"',
                },
                {
                    "role": "assistant",
                    "content": "A radiant woman stands on a deserted beach, arms outstretched, wearing a beige trench coat, white blouse, light blue jeans, and chic boots, against a backdrop of soft sky and sea. Moments later, she is seen mid-twirl, arms exuberant, with the lighting suggesting dawn or dusk. Then, she runs along the beach, her attire complemented by an off-white scarf and black ankle boots, the tranquil sea behind her. Finally, she holds a paper airplane, her pose reflecting joy and freedom, with the ocean's gentle waves and the sky's soft pastel hues enhancing the serene ambiance.",
                },
                {
                    "role": "user",
                    "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "A man jogging on a football field"',
                },
                {
                    "role": "assistant",
                    "content": "A determined man in athletic attire, including a blue long-sleeve shirt, black shorts, and blue socks, jogs around a snow-covered soccer field, showcasing his solitary exercise in a quiet, overcast setting. His long dreadlocks, focused expression, and the serene winter backdrop highlight his dedication to fitness. As he moves, his attire, consisting of a blue sports sweatshirt, black athletic pants, gloves, and sneakers, grips the snowy ground. He is seen running past a chain-link fence enclosing the playground area, with a basketball hoop and children's slide, suggesting a moment of solitary exercise amidst the empty field.",
                },
                {
                    "role": "user",
                    "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A woman is dancing, HD footage, close-up"',
                },
                {
                    "role": "assistant",
                    "content": "A young woman with her hair in an updo and wearing a teal hoodie stands against a light backdrop, initially looking over her shoulder with a contemplative expression. She then confidently makes a subtle dance move, suggesting rhythm and movement. Next, she appears poised and focused, looking directly at the camera. Her expression shifts to one of introspection as she gazes downward slightly. Finally, she dances with confidence, her left hand over her heart, symbolizing a poignant moment, all while dressed in the same teal hoodie against a plain, light-colored background.",
                },
                {
                    "role": "user",
                    "content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: "{text}"',
                },
            ],
            model="glm-4-0520",
            temperature=0.01,
            top_p=0.7,
            stream=False,
            max_tokens=250,
        )
        if response.choices:
            return response.choices[0].message.content
    return prompt

def load_model(enable_video_sys=False, pab_threshold=[100, 850], pab_gap=2):
    pab_config = CogVideoPABConfig(full_threshold=pab_threshold, full_gap=pab_gap)
    config = CogVideoConfig(world_size=1, enable_pab=enable_video_sys, pab_config=pab_config)
    engine = VideoSysEngine(config)
    return engine

def generate(engine, prompt, num_inference_steps=50, guidance_scale=6.0):
    try:
        video = engine.generate(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).video[0]

        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
            temp_file.name
            unique_filename = f"{uuid.uuid4().hex}.mp4"
            output_path = os.path.join("./temp_outputs", unique_filename)

            engine.save_video(video, output_path)
        return output_path
    except Exception as e:
        logger.error(f"An error occurred: {str(e)}")
        return None


def get_server_status():
    cpu_percent = psutil.cpu_percent()
    memory = psutil.virtual_memory()
    disk = psutil.disk_usage('/')
    gpus = GPUtil.getGPUs()
    gpu_info = []
    for gpu in gpus:
        gpu_info.append({
            'id': gpu.id,
            'name': gpu.name,
            'load': f"{gpu.load*100:.1f}%",
            'memory_used': f"{gpu.memoryUsed}MB",
            'memory_total': f"{gpu.memoryTotal}MB"
        })
    
    return {
        'cpu': f"{cpu_percent}%",
        'memory': f"{memory.percent}%",
        'disk': f"{disk.percent}%",
        'gpu': gpu_info
    }



css = """
body {
    font-family: Arial, sans-serif;
    line-height: 1.6;
    color: #333;
    margin: 0 auto;
    padding: 20px;
}

.container {
    display: flex;
    flex-direction: column;
    gap: 20px;
}

.row {
    display: flex;
    flex-wrap: wrap;
    gap: 20px;
}

.column {
    flex: 1;
    min-width: 0;
}

.video-output {
    width: 100%;
    max-width: 720px;
    height: auto;
    margin: 0 auto;
}

.server-status {
    position: fixed;
    bottom: 10px;
    left: 10px;
    background-color: rgba(240, 240, 240, 0.9);
    padding: 5px;
    border-radius: 5px;
    box-shadow: 0 1px 3px rgba(0,0,0,0.1);
    font-size: 0.8em;
    max-width: 340px;
}
.server-status h4 {
    margin: 0 0 5px 0;
    font-size: 0.9em;
}
.server-status-details {
    display: none;
}
.server-status-summary {
    cursor: pointer;
}
@media (max-width: 768px) {
    .row {
        flex-direction: column;
    }
    .column {
        width: 100%;
    }
    .video-output {
        width: 100%;
        height: auto;
    }
    .server-status {
        position: static;
        margin-top: 20px;
        max-width: 100%;
    }
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("""
    <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
        VideoSys Huggingface Space🤗
    </div>
    <div style="text-align: center; font-size: 15px;">
        🌐 Github: <a href="https://github.com/NUS-HPC-AI-Lab/VideoSys">https://github.com/NUS-HPC-AI-Lab/VideoSys</a><br>
        
        ⚠️ This demo is for academic research and experiential use only. 
        Users should strictly adhere to local laws and ethics.<br>
        
        💡 This demo only demonstrates single-device inference. To experience the full power of VideoSys, please deploy it with multiple devices.<br><br>
        </div>
    </div>
    """)

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt (Less than 200 Words)", value="Sunset over the sea.", lines=5)
            with gr.Row():
                gr.Markdown(
                    "✨Upon pressing the enhanced prompt button, we will use [GLM-4 Model](https://github.com/THUDM/GLM-4) to polish the prompt and overwrite the original one."
                )
                enhance_button = gr.Button("✨ Enhance Prompt(Optional)")

            with gr.Column():
                gr.Markdown(
                    "**Optional Parameters** (default values are recommended)<br>"
                    "Turn Inference Steps larger if you want more detailed video, but it will be slower.<br>"
                    "50 steps are recommended for most cases. will cause 120 seconds for inference.<br>"
                )
                with gr.Row():
                    num_inference_steps = gr.Number(label="Inference Steps", value=50)
                    guidance_scale = gr.Number(label="Guidance Scale", value=6.0)
                    pab_gap = gr.Number(label="PAB Gap", value=2, precision=0)
                    pab_threshold = gr.Textbox(label="PAB Threshold", value="100,850", lines=1)
                with gr.Row():
                    generate_button = gr.Button("🎬 Generate Video")
                    generate_button_vs = gr.Button("⚡️ Generate Video with VideoSys (Faster)")

        with gr.Column():
            with gr.Row():
                video_output = gr.Video(label="CogVideoX", width=720, height=480)
            with gr.Row():
                download_video_button = gr.File(label="📥 Download Video", visible=False)
                elapsed_time = gr.Textbox(label="Elapsed Time", value="0s", visible=False)
            with gr.Row():
                video_output_vs = gr.Video(label="CogVideoX with VideoSys", width=720, height=480)
            with gr.Row():
                download_video_button_vs = gr.File(label="📥 Download Video", visible=False)
                elapsed_time_vs = gr.Textbox(label="Elapsed Time", value="0s", visible=False)

    
    with gr.Column(elem_classes="server-status"):
        gr.Markdown("#### Server Status")
        with gr.Row():
            cpu_status = gr.Textbox(label="CPU", scale=1, container=False)
            memory_status = gr.Textbox(label="Memory", scale=1, container=False)
            disk_status = gr.Textbox(label="Disk", scale=1, container=False)
        with gr.Accordion("GPU Details", open=False):
            gpu_status = gr.JSON(container=False)
        refresh_button = gr.Button("Refresh", scale=1, size="sm")
         

    def generate_vanilla(prompt, num_inference_steps, guidance_scale, progress=gr.Progress(track_tqdm=True)):
        engine = load_model()
        t = time()
        video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
        elapsed_time = time() - t
        video_update = gr.update(visible=True, value=video_path)
        elapsed_time = gr.update(visible=True, value=f"{elapsed_time:.2f}s")

        return video_path, video_update, elapsed_time

    def generate_vs(prompt, num_inference_steps, guidance_scale, threshold, gap, progress=gr.Progress(track_tqdm=True)):
        threshold = [int(i) for i in threshold.split(",")]
        gap = int(gap)
        engine = load_model(enable_video_sys=True, pab_threshold=threshold, pab_gap=gap)
        t = time()
        video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
        elapsed_time = time() - t
        video_update = gr.update(visible=True, value=video_path)
        elapsed_time = gr.update(visible=True, value=f"{elapsed_time:.2f}s")

        return video_path, video_update, elapsed_time

    def enhance_prompt_func(prompt):
        return convert_prompt(prompt, retry_times=1)

    def update_server_status():
        status = get_server_status()
        return (
            f"{status['cpu']}",
            f"{status['memory']}",
            f"{status['disk']}",
            status['gpu']
        )


    generate_button.click(
        generate_vanilla,
        inputs=[prompt, num_inference_steps, guidance_scale],
        outputs=[video_output, download_video_button, elapsed_time],
    )

    generate_button_vs.click(
        generate_vs,
        inputs=[prompt, num_inference_steps, guidance_scale, pab_threshold, pab_gap],
        outputs=[video_output_vs, download_video_button_vs, elapsed_time_vs],
    )

    enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])

    
    refresh_button.click(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status])
    demo.load(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status], every=60)

if __name__ == "__main__":
    demo.queue(max_size=10, default_concurrency_limit=1)
    demo.launch()