Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
sys.path.append('./') | |
import gradio as gr | |
import spaces | |
import os | |
import sys | |
import subprocess | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import torch | |
import random | |
os.system("pip install -e ./controlnet_aux") | |
from controlnet_aux.open_pose import OpenposeDetector | |
from controlnet_aux.canny import CannyDetector | |
from depth_anything_v2.dpt import DepthAnythingV2 | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub import login | |
hf_token = os.environ.get("HF_TOKEN_GATED") | |
login(token=hf_token) | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
} | |
encoder = 'vitl' | |
model = DepthAnythingV2(**model_configs[encoder]) | |
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model") | |
state_dict = torch.load(filepath, map_location="cpu") | |
model.load_state_dict(state_dict) | |
model = model.to(DEVICE).eval() | |
import torch | |
from diffusers.utils import load_image | |
from diffusers import FluxControlNetPipeline, FluxControlNetModel | |
from diffusers.models import FluxMultiControlNetModel | |
base_model = 'black-forest-labs/FLUX.1-dev' | |
controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro' | |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
controlnet = FluxMultiControlNetModel([controlnet]) | |
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | |
pipe.to("cuda") | |
mode_mapping = {"canny":0, "tile":1, "depth":2, "blur":3, "openpose":4, "gray":5, "low quality": 6} | |
strength_mapping = {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4} | |
canny = CannyDetector() | |
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") | |
def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
def extract_depth(image): | |
image = np.asarray(image) | |
depth = model.infer_image(image[:, :, ::-1]) | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.astype(np.uint8) | |
gray_depth = Image.fromarray(depth).convert('RGB') | |
return gray_depth | |
def extract_openpose(img): | |
processed_image_open_pose = open_pose(img, hand_and_face=True) | |
return processed_image_open_pose | |
def extract_canny(image): | |
processed_image_canny = canny(image) | |
return processed_image_canny | |
def apply_gaussian_blur(image, kernel_size=(21, 21)): | |
image = convert_from_image_to_cv2(image) | |
blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0)) | |
return blurred_image | |
def convert_to_grayscale(image): | |
image = convert_from_image_to_cv2(image) | |
gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)) | |
return gray_image | |
def add_gaussian_noise(image, mean=0, sigma=10): | |
image = convert_from_image_to_cv2(image) | |
noise = np.random.normal(mean, sigma, image.shape) | |
noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8)) | |
return noisy_image | |
def tile(input_image, resolution=1024): | |
input_image = convert_from_image_to_cv2(input_image) | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
img = convert_from_cv2_to_image(img) | |
return img | |
def resize_img(input_image, max_side=1024, min_side=768, size=None, | |
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): | |
w, h = input_image.size | |
if size is not None: | |
w_resize_new, h_resize_new = size | |
else: | |
ratio = min_side / min(h, w) | |
w, h = round(ratio*w), round(ratio*h) | |
ratio = max_side / max(h, w) | |
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
if pad_to_max_side: | |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
offset_x = (max_side - w_resize_new) // 2 | |
offset_y = (max_side - h_resize_new) // 2 | |
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
input_image = Image.fromarray(res) | |
return input_image | |
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)): | |
control_mode_num = mode_mapping[control_mode] | |
if cond_in is None: | |
if image_in is not None: | |
image_in = resize_img(load_image(image_in)) | |
if control_mode == "canny": | |
control_image = extract_canny(image_in) | |
elif control_mode == "depth": | |
control_image = extract_depth(image_in) | |
elif control_mode == "openpose": | |
control_image = extract_openpose(image_in) | |
elif control_mode == "blur": | |
control_image = apply_gaussian_blur(image_in) | |
elif control_mode == "low quality": | |
control_image = add_gaussian_noise(image_in) | |
elif control_mode == "gray": | |
control_image = convert_to_grayscale(image_in) | |
elif control_mode == "tile": | |
control_image = tile(image_in) | |
else: | |
control_image = resize_img(load_image(cond_in)) | |
width, height = control_image.size | |
image = pipe( | |
prompt, | |
control_image=[control_image], | |
control_mode=[control_mode_num], | |
width=width, | |
height=height, | |
controlnet_conditioning_scale=[control_strength], | |
num_inference_steps=inference_steps, | |
guidance_scale=guidance_scale, | |
generator=torch.manual_seed(seed), | |
).images[0] | |
return image, control_image, gr.update(visible=True) | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 1080px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# FLUX.1-dev-ControlNet-Union-Pro | |
A unified ControlNet for FLUX.1-dev model from the InstantX team and Shakker Labs. Model card: [Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro). <br /> | |
The recommended strength: {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4}. Long prompt is preferred by FLUX.1. | |
""") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath") | |
image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath") | |
prompt = gr.Textbox(label="Prompt", value="best quality") | |
with gr.Accordion("Controlnet"): | |
control_mode = gr.Radio( | |
["canny", "depth", "openpose", "gray", "blur", "tile", "low quality"], label="Mode", value="gray", | |
info="select the control mode, one for all" | |
) | |
control_strength = gr.Slider( | |
label="control strength", | |
minimum=0, | |
maximum=1.0, | |
step=0.05, | |
value=0.50, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Accordion("Advanced settings", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=24) | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=3.5) | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
result = gr.Image(label="Result") | |
processed_cond = gr.Image(label="Preprocessed Cond") | |
submit_btn.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False | |
).then( | |
fn = infer, | |
inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed], | |
outputs = [result, processed_cond], | |
show_api=False | |
) | |
demo.queue(api_open=False) | |
demo.launch() |