Spaces:
Running
on
Zero
Running
on
Zero
# Openpose | |
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose | |
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose | |
# 3rd Edited by ControlNet | |
# 4th Edited by ControlNet (added face and correct hands) | |
# 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs) | |
# This preprocessor is licensed by CMU for non-commercial use only. | |
import os | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" | |
import json | |
import warnings | |
from typing import Callable, List, NamedTuple, Tuple, Union | |
import cv2 | |
import numpy as np | |
import torch | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from ..util import HWC3, resize_image | |
from . import util | |
from .body import Body, BodyResult, Keypoint | |
from .face import Face | |
from .hand import Hand | |
HandResult = List[Keypoint] | |
FaceResult = List[Keypoint] | |
class PoseResult(NamedTuple): | |
body: BodyResult | |
left_hand: Union[HandResult, None] | |
right_hand: Union[HandResult, None] | |
face: Union[FaceResult, None] | |
def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True): | |
""" | |
Draw the detected poses on an empty canvas. | |
Args: | |
poses (List[PoseResult]): A list of PoseResult objects containing the detected poses. | |
H (int): The height of the canvas. | |
W (int): The width of the canvas. | |
draw_body (bool, optional): Whether to draw body keypoints. Defaults to True. | |
draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True. | |
draw_face (bool, optional): Whether to draw face keypoints. Defaults to True. | |
Returns: | |
numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses. | |
""" | |
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) | |
for pose in poses: | |
if draw_body: | |
canvas = util.draw_bodypose(canvas, pose.body.keypoints) | |
if draw_hand: | |
canvas = util.draw_handpose(canvas, pose.left_hand) | |
canvas = util.draw_handpose(canvas, pose.right_hand) | |
if draw_face: | |
canvas = util.draw_facepose(canvas, pose.face) | |
return canvas | |
class OpenposeDetector: | |
""" | |
A class for detecting human poses in images using the Openpose model. | |
Attributes: | |
model_dir (str): Path to the directory where the pose models are stored. | |
""" | |
def __init__(self, body_estimation, hand_estimation=None, face_estimation=None): | |
self.body_estimation = body_estimation | |
self.hand_estimation = hand_estimation | |
self.face_estimation = face_estimation | |
def from_pretrained(cls, pretrained_model_or_path, filename=None, hand_filename=None, face_filename=None, cache_dir=None, local_files_only=False): | |
if pretrained_model_or_path == "lllyasviel/ControlNet": | |
filename = filename or "annotator/ckpts/body_pose_model.pth" | |
hand_filename = hand_filename or "annotator/ckpts/hand_pose_model.pth" | |
face_filename = face_filename or "facenet.pth" | |
face_pretrained_model_or_path = "lllyasviel/Annotators" | |
else: | |
filename = filename or "body_pose_model.pth" | |
hand_filename = hand_filename or "hand_pose_model.pth" | |
face_filename = face_filename or "facenet.pth" | |
face_pretrained_model_or_path = pretrained_model_or_path | |
if os.path.isdir(pretrained_model_or_path): | |
body_model_path = os.path.join(pretrained_model_or_path, filename) | |
hand_model_path = os.path.join(pretrained_model_or_path, hand_filename) | |
face_model_path = os.path.join(face_pretrained_model_or_path, face_filename) | |
else: | |
body_model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) | |
hand_model_path = hf_hub_download(pretrained_model_or_path, hand_filename, cache_dir=cache_dir, local_files_only=local_files_only) | |
face_model_path = hf_hub_download(face_pretrained_model_or_path, face_filename, cache_dir=cache_dir, local_files_only=local_files_only) | |
body_estimation = Body(body_model_path) | |
hand_estimation = Hand(hand_model_path) | |
face_estimation = Face(face_model_path) | |
return cls(body_estimation, hand_estimation, face_estimation) | |
def to(self, device): | |
self.body_estimation.to(device) | |
self.hand_estimation.to(device) | |
self.face_estimation.to(device) | |
return self | |
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]: | |
left_hand = None | |
right_hand = None | |
H, W, _ = oriImg.shape | |
for x, y, w, is_left in util.handDetect(body, oriImg): | |
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]).astype(np.float32) | |
if peaks.ndim == 2 and peaks.shape[1] == 2: | |
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) | |
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) | |
hand_result = [ | |
Keypoint(x=peak[0], y=peak[1]) | |
for peak in peaks | |
] | |
if is_left: | |
left_hand = hand_result | |
else: | |
right_hand = hand_result | |
return left_hand, right_hand | |
def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]: | |
face = util.faceDetect(body, oriImg) | |
if face is None: | |
return None | |
x, y, w = face | |
H, W, _ = oriImg.shape | |
heatmaps = self.face_estimation(oriImg[y:y+w, x:x+w, :]) | |
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32) | |
if peaks.ndim == 2 and peaks.shape[1] == 2: | |
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) | |
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) | |
return [ | |
Keypoint(x=peak[0], y=peak[1]) | |
for peak in peaks | |
] | |
return None | |
def detect_poses(self, oriImg, include_hand=False, include_face=False) -> List[PoseResult]: | |
""" | |
Detect poses in the given image. | |
Args: | |
oriImg (numpy.ndarray): The input image for pose detection. | |
include_hand (bool, optional): Whether to include hand detection. Defaults to False. | |
include_face (bool, optional): Whether to include face detection. Defaults to False. | |
Returns: | |
List[PoseResult]: A list of PoseResult objects containing the detected poses. | |
""" | |
oriImg = oriImg[:, :, ::-1].copy() | |
H, W, C = oriImg.shape | |
with torch.no_grad(): | |
candidate, subset = self.body_estimation(oriImg) | |
bodies = self.body_estimation.format_body_result(candidate, subset) | |
results = [] | |
for body in bodies: | |
left_hand, right_hand, face = (None,) * 3 | |
if include_hand: | |
left_hand, right_hand = self.detect_hands(body, oriImg) | |
if include_face: | |
face = self.detect_face(body, oriImg) | |
results.append(PoseResult(BodyResult( | |
keypoints=[ | |
Keypoint( | |
x=keypoint.x / float(W), | |
y=keypoint.y / float(H) | |
) if keypoint is not None else None | |
for keypoint in body.keypoints | |
], | |
total_score=body.total_score, | |
total_parts=body.total_parts | |
), left_hand, right_hand, face)) | |
return results | |
def __call__(self, input_image, detect_resolution=512, image_resolution=512, include_body=True, include_hand=False, include_face=False, hand_and_face=None, output_type="pil", **kwargs): | |
if hand_and_face is not None: | |
warnings.warn("hand_and_face is deprecated. Use include_hand and include_face instead.", DeprecationWarning) | |
include_hand = hand_and_face | |
include_face = hand_and_face | |
if "return_pil" in kwargs: | |
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) | |
output_type = "pil" if kwargs["return_pil"] else "np" | |
if type(output_type) is bool: | |
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") | |
if output_type: | |
output_type = "pil" | |
if not isinstance(input_image, np.ndarray): | |
input_image = np.array(input_image, dtype=np.uint8) | |
input_image = HWC3(input_image) | |
input_image = resize_image(input_image, detect_resolution) | |
H, W, C = input_image.shape | |
poses = self.detect_poses(input_image, include_hand, include_face) | |
canvas = draw_poses(poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face) | |
detected_map = canvas | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
if output_type == "pil": | |
detected_map = Image.fromarray(detected_map) | |
return detected_map | |