arxivgpt kim
commited on
Commit
โข
32ea1b8
1
Parent(s):
7712ec1
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
3 |
-
import json
|
4 |
|
5 |
def get_caption(image_in):
|
6 |
client = Client("https://vikhyatk-moondream1.hf.space/")
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
api_name="/answer_question"
|
11 |
)
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
result_json = json.loads(result)
|
16 |
-
caption = result_json['choices'][0]['text']
|
17 |
-
except json.JSONDecodeError:
|
18 |
-
print("Error: Response is not valid JSON.")
|
19 |
-
return ""
|
20 |
-
except (KeyError, IndexError):
|
21 |
-
print("Error: Invalid format in JSON response.")
|
22 |
-
return ""
|
23 |
-
|
24 |
-
return caption
|
25 |
-
|
26 |
|
27 |
def get_lcm(prompt):
|
28 |
client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/")
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
images.append(result[0])
|
40 |
-
return images
|
41 |
|
42 |
def infer(image_in):
|
43 |
caption = get_caption(image_in)
|
44 |
-
|
45 |
-
return
|
46 |
|
47 |
gr.Interface(
|
48 |
-
title="ArXivGPT Image",
|
49 |
-
description="
|
50 |
-
fn=infer,
|
51 |
-
inputs=[
|
52 |
gr.Image(type="filepath", label="Image input")
|
53 |
],
|
54 |
-
outputs=[
|
55 |
-
gr.
|
56 |
-
gr.Gallery(label="LCM Image variations")
|
57 |
]
|
58 |
-
).queue(max_size=25).launch()
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
|
|
3 |
|
4 |
def get_caption(image_in):
|
5 |
client = Client("https://vikhyatk-moondream1.hf.space/")
|
6 |
+
results = client.predict(
|
7 |
+
prompt, # existing parameters
|
8 |
+
num_images=4, # New parameter to request 4 images. This parameter may be different for the actual API.
|
|
|
9 |
)
|
10 |
+
# Print and return the results assuming it contains 4 images
|
11 |
+
print(results)
|
12 |
+
return results[:4] # Return first 4 images in case the API returns more
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def get_lcm(prompt):
|
15 |
client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/")
|
16 |
+
result = client.predict(
|
17 |
+
prompt, # str in 'parameter_5' Textbox component
|
18 |
+
0.3, # float (numeric value between 0.0 and 5) in 'Guidance' Slider component
|
19 |
+
8, # float (numeric value between 2 and 10) in 'Steps' Slider component
|
20 |
+
0, # float (numeric value between 0 and 12013012031030) in 'Seed' Slider component
|
21 |
+
True, # bool in 'Randomize' Checkbox component
|
22 |
+
api_name="/predict"
|
23 |
+
)
|
24 |
+
print(result)
|
25 |
+
return result[0]
|
|
|
|
|
26 |
|
27 |
def infer(image_in):
|
28 |
caption = get_caption(image_in)
|
29 |
+
img_var = get_lcm(caption)
|
30 |
+
return img_var
|
31 |
|
32 |
gr.Interface(
|
33 |
+
title = "ArXivGPT Image",
|
34 |
+
description = "Image to Image variation, using LCM SDXL & Moondream1",
|
35 |
+
fn = infer,
|
36 |
+
inputs = [
|
37 |
gr.Image(type="filepath", label="Image input")
|
38 |
],
|
39 |
+
outputs = [
|
40 |
+
gr.Image(label="Image variation")
|
|
|
41 |
]
|
42 |
+
).queue(max_size=25).launch()
|