Upload 54 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- app.py +256 -0
- enviroment.yaml +125 -0
- gradio_cached_examples/19/component 0/3725061b1c373489a048/000003.mp4 +0 -0
- gradio_cached_examples/19/component 0/a21547779ff20817de06/000002.mp4 +0 -0
- gradio_cached_examples/19/component 0/ab669c2acaeb6f957c50/000001.mp4 +0 -0
- gradio_cached_examples/19/component 0/ceca750cda163ac6f548/000000.mp4 +0 -0
- gradio_cached_examples/19/log.csv +5 -0
- lcm_scheduler.py +468 -0
- outputs_gradio/000000.mp4 +0 -0
- outputs_gradio/000001.mp4 +0 -0
- outputs_gradio/000002.mp4 +0 -0
- outputs_gradio/000003.mp4 +0 -0
- outputs_gradio/000004.mp4 +0 -0
- outputs_gradio/000005.mp4 +0 -0
- pipeline.py +711 -0
- requirements.txt +4 -0
- safetensors/AnimateLCM-SVD-xt-1.1.safetensors +3 -0
- safetensors/AnimateLCM-SVD-xt.safetensors +3 -0
- test_imgs/ai-generated-8255456_1280.png +3 -0
- test_imgs/ai-generated-8411866_1280.jpg +0 -0
- test_imgs/ai-generated-8463496_1280.jpg +0 -0
- test_imgs/ai-generated-8476858_1280.png +0 -0
- test_imgs/ai-generated-8479572_1280.jpg +0 -0
- test_imgs/ai-generated-8481641_1280.jpg +0 -0
- test_imgs/ai-generated-8489879_1280.png +3 -0
- test_imgs/ai-generated-8496135_1280.jpg +0 -0
- test_imgs/ai-generated-8496952_1280.jpg +0 -0
- test_imgs/ai-generated-8498844_1280.jpg +0 -0
- test_imgs/bird-7411270_1280.jpg +0 -0
- test_imgs/bird-7586857_1280.jpg +0 -0
- test_imgs/bird-8014191_1280.jpg +0 -0
- test_imgs/couple-8019370_1280.jpg +0 -0
- test_imgs/cupcakes-380178_1280.jpg +0 -0
- test_imgs/dog-7330712_1280.jpg +0 -0
- test_imgs/dog-7396912_1280.jpg +0 -0
- test_imgs/girl-4898696_1280.jpg +0 -0
- test_imgs/grey-capped-flycatcher-8071233_1280.jpg +0 -0
- test_imgs/halloween-4585684_1280.jpg +0 -0
- test_imgs/leaf-7260246_1280.jpg +0 -0
- test_imgs/meerkat-7465819_1280.jpg +0 -0
- test_imgs/mobile-phone-1875813_1280.jpg +0 -0
- test_imgs/mother-8097324_1280.jpg +0 -0
- test_imgs/plane-8145957_1280.jpg +0 -0
- test_imgs/power-station-6579092_1280.jpg +0 -0
- test_imgs/ship-7833921_1280.jpg +0 -0
- test_imgs/sleep-7871915_1280.jpg +0 -0
- test_imgs/squirrel-7985502_1280.jpg +0 -0
- test_imgs/squirrel-8211238_1280.jpg +0 -0
- test_imgs/training-8122941_1280.jpg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
test_imgs/ai-generated-8255456_1280.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
test_imgs/ai-generated-8489879_1280.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
# import gradio.helpers
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
from glob import glob
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Optional
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
from diffusers.utils import load_image, export_to_video
|
12 |
+
from pipeline import StableVideoDiffusionPipeline
|
13 |
+
|
14 |
+
import random
|
15 |
+
from safetensors import safe_open
|
16 |
+
from lcm_scheduler import AnimateLCMSVDStochasticIterativeScheduler
|
17 |
+
|
18 |
+
|
19 |
+
def get_safetensors_files():
|
20 |
+
models_dir = "./safetensors"
|
21 |
+
safetensors_files = [
|
22 |
+
f for f in os.listdir(models_dir) if f.endswith(".safetensors")
|
23 |
+
]
|
24 |
+
return safetensors_files
|
25 |
+
|
26 |
+
|
27 |
+
def model_select(selected_file):
|
28 |
+
print("load model weights", selected_file)
|
29 |
+
pipe.unet.cpu()
|
30 |
+
file_path = os.path.join("./safetensors", selected_file)
|
31 |
+
state_dict = {}
|
32 |
+
with safe_open(file_path, framework="pt", device="cpu") as f:
|
33 |
+
for key in f.keys():
|
34 |
+
state_dict[key] = f.get_tensor(key)
|
35 |
+
missing, unexpected = pipe.unet.load_state_dict(state_dict, strict=True)
|
36 |
+
pipe.unet.cuda()
|
37 |
+
del state_dict
|
38 |
+
return
|
39 |
+
|
40 |
+
|
41 |
+
noise_scheduler = AnimateLCMSVDStochasticIterativeScheduler(
|
42 |
+
num_train_timesteps=40,
|
43 |
+
sigma_min=0.002,
|
44 |
+
sigma_max=700.0,
|
45 |
+
sigma_data=1.0,
|
46 |
+
s_noise=1.0,
|
47 |
+
rho=7,
|
48 |
+
clip_denoised=False,
|
49 |
+
)
|
50 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
51 |
+
"stabilityai/stable-video-diffusion-img2vid-xt",
|
52 |
+
scheduler=noise_scheduler,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
variant="fp16",
|
55 |
+
)
|
56 |
+
pipe.to("cuda")
|
57 |
+
pipe.enable_model_cpu_offload() # for smaller cost
|
58 |
+
model_select("AnimateLCM-SVD-xt.safetensors")
|
59 |
+
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # for faster inference
|
60 |
+
|
61 |
+
|
62 |
+
max_64_bit_int = 2**63 - 1
|
63 |
+
|
64 |
+
|
65 |
+
def sample(
|
66 |
+
image: Image,
|
67 |
+
seed: Optional[int] = 42,
|
68 |
+
randomize_seed: bool = False,
|
69 |
+
motion_bucket_id: int = 80,
|
70 |
+
fps_id: int = 8,
|
71 |
+
max_guidance_scale: float = 1.2,
|
72 |
+
min_guidance_scale: float = 1,
|
73 |
+
width: int = 1024,
|
74 |
+
height: int = 576,
|
75 |
+
num_inference_steps: int = 4,
|
76 |
+
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
77 |
+
output_folder: str = "outputs_gradio",
|
78 |
+
):
|
79 |
+
if image.mode == "RGBA":
|
80 |
+
image = image.convert("RGB")
|
81 |
+
|
82 |
+
if randomize_seed:
|
83 |
+
seed = random.randint(0, max_64_bit_int)
|
84 |
+
generator = torch.manual_seed(seed)
|
85 |
+
|
86 |
+
os.makedirs(output_folder, exist_ok=True)
|
87 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
88 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
89 |
+
|
90 |
+
with torch.autocast("cuda"):
|
91 |
+
frames = pipe(
|
92 |
+
image,
|
93 |
+
decode_chunk_size=decoding_t,
|
94 |
+
generator=generator,
|
95 |
+
motion_bucket_id=motion_bucket_id,
|
96 |
+
height=height,
|
97 |
+
width=width,
|
98 |
+
num_inference_steps=num_inference_steps,
|
99 |
+
min_guidance_scale=min_guidance_scale,
|
100 |
+
max_guidance_scale=max_guidance_scale,
|
101 |
+
).frames[0]
|
102 |
+
export_to_video(frames, video_path, fps=fps_id)
|
103 |
+
torch.manual_seed(seed)
|
104 |
+
|
105 |
+
return video_path, seed
|
106 |
+
|
107 |
+
|
108 |
+
def resize_image(image, output_size=(1024, 576)):
|
109 |
+
# Calculate aspect ratios
|
110 |
+
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
111 |
+
image_aspect = image.width / image.height # Aspect ratio of the original image
|
112 |
+
|
113 |
+
# Resize then crop if the original image is larger
|
114 |
+
if image_aspect > target_aspect:
|
115 |
+
# Resize the image to match the target height, maintaining aspect ratio
|
116 |
+
new_height = output_size[1]
|
117 |
+
new_width = int(new_height * image_aspect)
|
118 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
119 |
+
# Calculate coordinates for cropping
|
120 |
+
left = (new_width - output_size[0]) / 2
|
121 |
+
top = 0
|
122 |
+
right = (new_width + output_size[0]) / 2
|
123 |
+
bottom = output_size[1]
|
124 |
+
else:
|
125 |
+
# Resize the image to match the target width, maintaining aspect ratio
|
126 |
+
new_width = output_size[0]
|
127 |
+
new_height = int(new_width / image_aspect)
|
128 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
129 |
+
# Calculate coordinates for cropping
|
130 |
+
left = 0
|
131 |
+
top = (new_height - output_size[1]) / 2
|
132 |
+
right = output_size[0]
|
133 |
+
bottom = (new_height + output_size[1]) / 2
|
134 |
+
|
135 |
+
# Crop the image
|
136 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
137 |
+
return cropped_image
|
138 |
+
|
139 |
+
|
140 |
+
with gr.Blocks() as demo:
|
141 |
+
gr.Markdown(
|
142 |
+
"""
|
143 |
+
# [AnimateLCM: Accelerating the Animation of Personalized Diffusion Models and Adapters with Decoupled Consistency Learning](https://arxiv.org/abs/2402.00769)
|
144 |
+
Fu-Yun Wang, Zhaoyang Huang (*Corresponding Author), Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, Hongsheng Li (*Corresponding Author)<br>
|
145 |
+
[arXiv Report](https://arxiv.org/abs/2402.00769) | [Project Page](https://animatelcm.github.io/) | [Github](https://github.com/G-U-N/AnimateLCM) | [Civitai](https://civitai.com/models/290375/animatelcm-fast-video-generation) | [Replicate](https://replicate.com/camenduru/animate-lcm)
|
146 |
+
Related Models:
|
147 |
+
[AnimateLCM-t2v](https://huggingface.co/wangfuyun/AnimateLCM): Personalized Text-to-Video Generation
|
148 |
+
[AnimateLCM-SVD-xt](https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt): General Image-to-Video Generation
|
149 |
+
[AnimateLCM-i2v](https://huggingface.co/wangfuyun/AnimateLCM-I2V): Personalized Image-to-Video Generation
|
150 |
+
"""
|
151 |
+
)
|
152 |
+
with gr.Row():
|
153 |
+
with gr.Column():
|
154 |
+
image = gr.Image(label="Upload your image", type="pil")
|
155 |
+
generate_btn = gr.Button("Generate")
|
156 |
+
video = gr.Video()
|
157 |
+
with gr.Accordion("Advanced options", open=False):
|
158 |
+
safetensors_dropdown = gr.Dropdown(
|
159 |
+
label="Choose Safetensors", choices=get_safetensors_files()
|
160 |
+
)
|
161 |
+
seed = gr.Slider(
|
162 |
+
label="Seed",
|
163 |
+
value=42,
|
164 |
+
randomize=False,
|
165 |
+
minimum=0,
|
166 |
+
maximum=max_64_bit_int,
|
167 |
+
step=1,
|
168 |
+
)
|
169 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
170 |
+
motion_bucket_id = gr.Slider(
|
171 |
+
label="Motion bucket id",
|
172 |
+
info="Controls how much motion to add/remove from the image",
|
173 |
+
value=80,
|
174 |
+
minimum=1,
|
175 |
+
maximum=255,
|
176 |
+
)
|
177 |
+
fps_id = gr.Slider(
|
178 |
+
label="Frames per second",
|
179 |
+
info="The length of your video in seconds will be 25/fps",
|
180 |
+
value=8,
|
181 |
+
minimum=5,
|
182 |
+
maximum=30,
|
183 |
+
)
|
184 |
+
width = gr.Slider(
|
185 |
+
label="Width of input image",
|
186 |
+
info="It should be divisible by 64",
|
187 |
+
value=1024,
|
188 |
+
minimum=576,
|
189 |
+
maximum=2048,
|
190 |
+
)
|
191 |
+
height = gr.Slider(
|
192 |
+
label="Height of input image",
|
193 |
+
info="It should be divisible by 64",
|
194 |
+
value=576,
|
195 |
+
minimum=320,
|
196 |
+
maximum=1152,
|
197 |
+
)
|
198 |
+
max_guidance_scale = gr.Slider(
|
199 |
+
label="Max guidance scale",
|
200 |
+
info="classifier-free guidance strength",
|
201 |
+
value=1.2,
|
202 |
+
minimum=1,
|
203 |
+
maximum=2,
|
204 |
+
)
|
205 |
+
min_guidance_scale = gr.Slider(
|
206 |
+
label="Min guidance scale",
|
207 |
+
info="classifier-free guidance strength",
|
208 |
+
value=1,
|
209 |
+
minimum=1,
|
210 |
+
maximum=1.5,
|
211 |
+
)
|
212 |
+
num_inference_steps = gr.Slider(
|
213 |
+
label="Num inference steps",
|
214 |
+
info="steps for inference",
|
215 |
+
value=4,
|
216 |
+
minimum=1,
|
217 |
+
maximum=20,
|
218 |
+
step=1,
|
219 |
+
)
|
220 |
+
|
221 |
+
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
222 |
+
generate_btn.click(
|
223 |
+
fn=sample,
|
224 |
+
inputs=[
|
225 |
+
image,
|
226 |
+
seed,
|
227 |
+
randomize_seed,
|
228 |
+
motion_bucket_id,
|
229 |
+
fps_id,
|
230 |
+
max_guidance_scale,
|
231 |
+
min_guidance_scale,
|
232 |
+
width,
|
233 |
+
height,
|
234 |
+
num_inference_steps,
|
235 |
+
],
|
236 |
+
outputs=[video, seed],
|
237 |
+
api_name="video",
|
238 |
+
)
|
239 |
+
safetensors_dropdown.change(fn=model_select, inputs=safetensors_dropdown)
|
240 |
+
|
241 |
+
gr.Examples(
|
242 |
+
examples=[
|
243 |
+
"test_imgs/ai-generated-8255456_1280.png",
|
244 |
+
"test_imgs/ai-generated-8496135_1280.jpg",
|
245 |
+
"test_imgs/dog-7396912_1280.jpg",
|
246 |
+
"test_imgs/ship-7833921_1280.jpg",
|
247 |
+
],
|
248 |
+
inputs=image,
|
249 |
+
outputs=[video, seed],
|
250 |
+
fn=sample,
|
251 |
+
cache_examples=True,
|
252 |
+
)
|
253 |
+
|
254 |
+
if __name__ == "__main__":
|
255 |
+
demo.queue(max_size=20, api_open=False)
|
256 |
+
demo.launch(share=True, show_api=False)
|
enviroment.yaml
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: svd
|
2 |
+
channels:
|
3 |
+
- defaults
|
4 |
+
dependencies:
|
5 |
+
- _libgcc_mutex=0.1=main
|
6 |
+
- _openmp_mutex=5.1=1_gnu
|
7 |
+
- ca-certificates=2023.12.12=h06a4308_0
|
8 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
9 |
+
- libffi=3.4.4=h6a678d5_0
|
10 |
+
- libgcc-ng=11.2.0=h1234567_1
|
11 |
+
- libgomp=11.2.0=h1234567_1
|
12 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
13 |
+
- ncurses=6.4=h6a678d5_0
|
14 |
+
- openssl=3.0.12=h7f8727e_0
|
15 |
+
- pip=23.3.1=py39h06a4308_0
|
16 |
+
- python=3.9.18=h955ad1f_0
|
17 |
+
- readline=8.2=h5eee18b_0
|
18 |
+
- setuptools=68.2.2=py39h06a4308_0
|
19 |
+
- sqlite=3.41.2=h5eee18b_0
|
20 |
+
- tk=8.6.12=h1ccaba5_0
|
21 |
+
- wheel=0.41.2=py39h06a4308_0
|
22 |
+
- xz=5.4.5=h5eee18b_0
|
23 |
+
- zlib=1.2.13=h5eee18b_0
|
24 |
+
- pip:
|
25 |
+
- accelerate==0.26.1
|
26 |
+
- albumentations==1.3.1
|
27 |
+
- antlr4-python3-runtime==4.9.3
|
28 |
+
- appdirs==1.4.4
|
29 |
+
- bitsandbytes==0.42.0
|
30 |
+
- braceexpand==0.1.7
|
31 |
+
- brotli==1.1.0
|
32 |
+
- certifi==2023.11.17
|
33 |
+
- cffi==1.16.0
|
34 |
+
- charset-normalizer==3.3.2
|
35 |
+
- click==8.1.7
|
36 |
+
- dataclasses==0.6
|
37 |
+
- decord==0.6.0
|
38 |
+
- diffusers==0.25.1
|
39 |
+
- docker-pycreds==0.4.0
|
40 |
+
- docopt==0.6.2
|
41 |
+
- einops==0.7.0
|
42 |
+
- exifread-nocycle==3.0.1
|
43 |
+
- ffmpeg-python==0.2.0
|
44 |
+
- filelock==3.13.1
|
45 |
+
- fire==0.5.0
|
46 |
+
- fsspec==2023.12.2
|
47 |
+
- future==0.18.3
|
48 |
+
- gitdb==4.0.11
|
49 |
+
- gitpython==3.1.41
|
50 |
+
- huggingface-hub==0.20.3
|
51 |
+
- idna==3.6
|
52 |
+
- imageio==2.33.1
|
53 |
+
- img2dataset==1.45.0
|
54 |
+
- importlib-metadata==7.0.1
|
55 |
+
- jinja2==3.1.3
|
56 |
+
- joblib==1.3.2
|
57 |
+
- langdetect==1.0.9
|
58 |
+
- lazy-loader==0.3
|
59 |
+
- markupsafe==2.1.4
|
60 |
+
- mpmath==1.3.0
|
61 |
+
- mutagen==1.47.0
|
62 |
+
- networkx==3.2.1
|
63 |
+
- numpy==1.26.3
|
64 |
+
- nvidia-cublas-cu12==12.1.3.1
|
65 |
+
- nvidia-cuda-cupti-cu12==12.1.105
|
66 |
+
- nvidia-cuda-nvrtc-cu12==12.1.105
|
67 |
+
- nvidia-cuda-runtime-cu12==12.1.105
|
68 |
+
- nvidia-cudnn-cu12==8.9.2.26
|
69 |
+
- nvidia-cufft-cu12==11.0.2.54
|
70 |
+
- nvidia-curand-cu12==10.3.2.106
|
71 |
+
- nvidia-cusolver-cu12==11.4.5.107
|
72 |
+
- nvidia-cusparse-cu12==12.1.0.106
|
73 |
+
- nvidia-nccl-cu12==2.19.3
|
74 |
+
- nvidia-nvjitlink-cu12==12.3.101
|
75 |
+
- nvidia-nvtx-cu12==12.1.105
|
76 |
+
- omegaconf==2.3.0
|
77 |
+
- opencv-python==4.9.0.80
|
78 |
+
- opencv-python-headless==4.9.0.80
|
79 |
+
- packaging==23.2
|
80 |
+
- pandas==2.2.0
|
81 |
+
- pillow==10.2.0
|
82 |
+
- platformdirs==4.1.0
|
83 |
+
- protobuf==4.25.2
|
84 |
+
- psutil==5.9.8
|
85 |
+
- pyarrow==15.0.0
|
86 |
+
- pycparser==2.21
|
87 |
+
- pycryptodomex==3.20.0
|
88 |
+
- python-dateutil==2.8.2
|
89 |
+
- pytz==2023.3.post1
|
90 |
+
- pyyaml==6.0.1
|
91 |
+
- qudida==0.0.4
|
92 |
+
- regex==2023.12.25
|
93 |
+
- requests==2.31.0
|
94 |
+
- safetensors==0.4.2
|
95 |
+
- scenedetect==0.6.2
|
96 |
+
- scikit-image==0.22.0
|
97 |
+
- scikit-learn==1.4.0
|
98 |
+
- scipy==1.12.0
|
99 |
+
- sentry-sdk==1.39.2
|
100 |
+
- setproctitle==1.3.3
|
101 |
+
- six==1.16.0
|
102 |
+
- smmap==5.0.1
|
103 |
+
- soundfile==0.12.1
|
104 |
+
- sympy==1.12
|
105 |
+
- termcolor==2.4.0
|
106 |
+
- threadpoolctl==3.2.0
|
107 |
+
- tifffile==2023.12.9
|
108 |
+
- timeout-decorator==0.5.0
|
109 |
+
- tokenizers==0.15.1
|
110 |
+
- torch==2.2.0
|
111 |
+
- torchdata==0.7.1
|
112 |
+
- torchvision==0.17.0
|
113 |
+
- tqdm==4.66.1
|
114 |
+
- transformers==4.37.0
|
115 |
+
- triton==2.2.0
|
116 |
+
- typing-extensions==4.9.0
|
117 |
+
- tzdata==2023.4
|
118 |
+
- urllib3==2.1.0
|
119 |
+
- wandb==0.16.2
|
120 |
+
- webdataset==0.2.86
|
121 |
+
- websockets==12.0
|
122 |
+
- webvtt-py==0.4.6
|
123 |
+
- xformers==0.0.24
|
124 |
+
- yt-dlp==2023.12.30
|
125 |
+
- zipp==3.17.0
|
gradio_cached_examples/19/component 0/3725061b1c373489a048/000003.mp4
ADDED
Binary file (734 kB). View file
|
|
gradio_cached_examples/19/component 0/a21547779ff20817de06/000002.mp4
ADDED
Binary file (393 kB). View file
|
|
gradio_cached_examples/19/component 0/ab669c2acaeb6f957c50/000001.mp4
ADDED
Binary file (848 kB). View file
|
|
gradio_cached_examples/19/component 0/ceca750cda163ac6f548/000000.mp4
ADDED
Binary file (641 kB). View file
|
|
gradio_cached_examples/19/log.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
component 0,Seed,flag,username,timestamp
|
2 |
+
"{""video"":{""path"":""gradio_cached_examples/19/component 0/ceca750cda163ac6f548/000000.mp4"",""url"":""/file=/tmp/gradio/2879d2ca96d58c8931b302213e276f4955b51afa/000000.mp4"",""size"":null,""orig_name"":""000000.mp4"",""mime_type"":null,""is_stream"":false},""subtitles"":null}",42,,,2024-02-25 17:49:43.926703
|
3 |
+
"{""video"":{""path"":""gradio_cached_examples/19/component 0/ab669c2acaeb6f957c50/000001.mp4"",""url"":""/file=/tmp/gradio/3fe5de118a0bc4b9e389758b5bfb2a9682e9ec4f/000001.mp4"",""size"":null,""orig_name"":""000001.mp4"",""mime_type"":null,""is_stream"":false},""subtitles"":null}",42,,,2024-02-25 17:50:17.506490
|
4 |
+
"{""video"":{""path"":""gradio_cached_examples/19/component 0/a21547779ff20817de06/000002.mp4"",""url"":""/file=/tmp/gradio/7bb404b88df0715738e14aa3e0d5d6975d90ad87/000002.mp4"",""size"":null,""orig_name"":""000002.mp4"",""mime_type"":null,""is_stream"":false},""subtitles"":null}",42,,,2024-02-25 17:50:51.099873
|
5 |
+
"{""video"":{""path"":""gradio_cached_examples/19/component 0/3725061b1c373489a048/000003.mp4"",""url"":""/file=/tmp/gradio/515c7849b4b9b1de0fdded51f77517bd15f92734/000003.mp4"",""size"":null,""orig_name"":""000003.mp4"",""mime_type"":null,""is_stream"":false},""subtitles"":null}",42,,,2024-02-25 17:51:24.329419
|
lcm_scheduler.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.utils import BaseOutput, logging
|
23 |
+
from diffusers.utils.torch_utils import randn_tensor
|
24 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class AnimateLCMSVDStochasticIterativeSchedulerOutput(BaseOutput):
|
32 |
+
"""
|
33 |
+
Output class for the scheduler's `step` function.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
37 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
38 |
+
denoising loop.
|
39 |
+
"""
|
40 |
+
|
41 |
+
prev_sample: torch.FloatTensor
|
42 |
+
|
43 |
+
|
44 |
+
class AnimateLCMSVDStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
|
45 |
+
"""
|
46 |
+
Multistep and onestep sampling for consistency models.
|
47 |
+
|
48 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
49 |
+
methods the library implements for all schedulers such as loading and saving.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
num_train_timesteps (`int`, defaults to 40):
|
53 |
+
The number of diffusion steps to train the model.
|
54 |
+
sigma_min (`float`, defaults to 0.002):
|
55 |
+
Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
|
56 |
+
sigma_max (`float`, defaults to 80.0):
|
57 |
+
Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
|
58 |
+
sigma_data (`float`, defaults to 0.5):
|
59 |
+
The standard deviation of the data distribution from the EDM
|
60 |
+
[paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
|
61 |
+
s_noise (`float`, defaults to 1.0):
|
62 |
+
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
|
63 |
+
1.011]. Defaults to 1.0 from the original implementation.
|
64 |
+
rho (`float`, defaults to 7.0):
|
65 |
+
The parameter for calculating the Karras sigma schedule from the EDM
|
66 |
+
[paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
|
67 |
+
clip_denoised (`bool`, defaults to `True`):
|
68 |
+
Whether to clip the denoised outputs to `(-1, 1)`.
|
69 |
+
timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
|
70 |
+
An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
|
71 |
+
increasing order.
|
72 |
+
"""
|
73 |
+
|
74 |
+
order = 1
|
75 |
+
|
76 |
+
@register_to_config
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
num_train_timesteps: int = 40,
|
80 |
+
sigma_min: float = 0.002,
|
81 |
+
sigma_max: float = 80.0,
|
82 |
+
sigma_data: float = 0.5,
|
83 |
+
s_noise: float = 1.0,
|
84 |
+
rho: float = 7.0,
|
85 |
+
clip_denoised: bool = True,
|
86 |
+
):
|
87 |
+
# standard deviation of the initial noise distribution
|
88 |
+
self.init_noise_sigma = (sigma_max**2 + 1) ** 0.5
|
89 |
+
# self.init_noise_sigma = sigma_max
|
90 |
+
|
91 |
+
ramp = np.linspace(0, 1, num_train_timesteps)
|
92 |
+
sigmas = self._convert_to_karras(ramp)
|
93 |
+
sigmas = np.concatenate([sigmas, np.array([0])])
|
94 |
+
timesteps = self.sigma_to_t(sigmas)
|
95 |
+
|
96 |
+
# setable values
|
97 |
+
self.num_inference_steps = None
|
98 |
+
self.sigmas = torch.from_numpy(sigmas)
|
99 |
+
self.timesteps = torch.from_numpy(timesteps)
|
100 |
+
self.custom_timesteps = False
|
101 |
+
self.is_scale_input_called = False
|
102 |
+
self._step_index = None
|
103 |
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
104 |
+
|
105 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
106 |
+
if schedule_timesteps is None:
|
107 |
+
schedule_timesteps = self.timesteps
|
108 |
+
|
109 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
110 |
+
return indices.item()
|
111 |
+
|
112 |
+
@property
|
113 |
+
def step_index(self):
|
114 |
+
"""
|
115 |
+
The index counter for current timestep. It will increae 1 after each scheduler step.
|
116 |
+
"""
|
117 |
+
return self._step_index
|
118 |
+
|
119 |
+
def scale_model_input(
|
120 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
121 |
+
) -> torch.FloatTensor:
|
122 |
+
"""
|
123 |
+
Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
sample (`torch.FloatTensor`):
|
127 |
+
The input sample.
|
128 |
+
timestep (`float` or `torch.FloatTensor`):
|
129 |
+
The current timestep in the diffusion chain.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
`torch.FloatTensor`:
|
133 |
+
A scaled input sample.
|
134 |
+
"""
|
135 |
+
# Get sigma corresponding to timestep
|
136 |
+
if self.step_index is None:
|
137 |
+
self._init_step_index(timestep)
|
138 |
+
|
139 |
+
sigma = self.sigmas[self.step_index]
|
140 |
+
sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
141 |
+
|
142 |
+
self.is_scale_input_called = True
|
143 |
+
return sample
|
144 |
+
|
145 |
+
# def _sigma_to_t(self, sigma, log_sigmas):
|
146 |
+
# # get log sigma
|
147 |
+
# log_sigma = np.log(np.maximum(sigma, 1e-10))
|
148 |
+
|
149 |
+
# # get distribution
|
150 |
+
# dists = log_sigma - log_sigmas[:, np.newaxis]
|
151 |
+
|
152 |
+
# # get sigmas range
|
153 |
+
# low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
154 |
+
# high_idx = low_idx + 1
|
155 |
+
|
156 |
+
# low = log_sigmas[low_idx]
|
157 |
+
# high = log_sigmas[high_idx]
|
158 |
+
|
159 |
+
# # interpolate sigmas
|
160 |
+
# w = (low - log_sigma) / (low - high)
|
161 |
+
# w = np.clip(w, 0, 1)
|
162 |
+
|
163 |
+
# # transform interpolation to time range
|
164 |
+
# t = (1 - w) * low_idx + w * high_idx
|
165 |
+
# t = t.reshape(sigma.shape)
|
166 |
+
# return t
|
167 |
+
|
168 |
+
def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
|
169 |
+
"""
|
170 |
+
Gets scaled timesteps from the Karras sigmas for input to the consistency model.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
sigmas (`float` or `np.ndarray`):
|
174 |
+
A single Karras sigma or an array of Karras sigmas.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
`float` or `np.ndarray`:
|
178 |
+
A scaled input timestep or scaled input timestep array.
|
179 |
+
"""
|
180 |
+
if not isinstance(sigmas, np.ndarray):
|
181 |
+
sigmas = np.array(sigmas, dtype=np.float64)
|
182 |
+
|
183 |
+
timesteps = 0.25 * np.log(sigmas + 1e-44)
|
184 |
+
|
185 |
+
return timesteps
|
186 |
+
|
187 |
+
def set_timesteps(
|
188 |
+
self,
|
189 |
+
num_inference_steps: Optional[int] = None,
|
190 |
+
device: Union[str, torch.device] = None,
|
191 |
+
timesteps: Optional[List[int]] = None,
|
192 |
+
):
|
193 |
+
"""
|
194 |
+
Sets the timesteps used for the diffusion chain (to be run before inference).
|
195 |
+
|
196 |
+
Args:
|
197 |
+
num_inference_steps (`int`):
|
198 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
199 |
+
device (`str` or `torch.device`, *optional*):
|
200 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
201 |
+
timesteps (`List[int]`, *optional*):
|
202 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
203 |
+
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
|
204 |
+
`num_inference_steps` must be `None`.
|
205 |
+
"""
|
206 |
+
if num_inference_steps is None and timesteps is None:
|
207 |
+
raise ValueError(
|
208 |
+
"Exactly one of `num_inference_steps` or `timesteps` must be supplied."
|
209 |
+
)
|
210 |
+
|
211 |
+
if num_inference_steps is not None and timesteps is not None:
|
212 |
+
raise ValueError(
|
213 |
+
"Can only pass one of `num_inference_steps` or `timesteps`."
|
214 |
+
)
|
215 |
+
|
216 |
+
# Follow DDPMScheduler custom timesteps logic
|
217 |
+
if timesteps is not None:
|
218 |
+
for i in range(1, len(timesteps)):
|
219 |
+
if timesteps[i] >= timesteps[i - 1]:
|
220 |
+
raise ValueError("`timesteps` must be in descending order.")
|
221 |
+
|
222 |
+
if timesteps[0] >= self.config.num_train_timesteps:
|
223 |
+
raise ValueError(
|
224 |
+
f"`timesteps` must start before `self.config.train_timesteps`:"
|
225 |
+
f" {self.config.num_train_timesteps}."
|
226 |
+
)
|
227 |
+
|
228 |
+
timesteps = np.array(timesteps, dtype=np.int64)
|
229 |
+
self.custom_timesteps = True
|
230 |
+
else:
|
231 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
232 |
+
raise ValueError(
|
233 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
234 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
235 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
236 |
+
)
|
237 |
+
|
238 |
+
self.num_inference_steps = num_inference_steps
|
239 |
+
|
240 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
241 |
+
timesteps = (
|
242 |
+
(np.arange(0, num_inference_steps) * step_ratio)
|
243 |
+
.round()[::-1]
|
244 |
+
.copy()
|
245 |
+
.astype(np.int64)
|
246 |
+
)
|
247 |
+
self.custom_timesteps = False
|
248 |
+
|
249 |
+
# Map timesteps to Karras sigmas directly for multistep sampling
|
250 |
+
# See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
|
251 |
+
num_train_timesteps = self.config.num_train_timesteps
|
252 |
+
ramp = timesteps[::-1].copy()
|
253 |
+
ramp = ramp / (num_train_timesteps - 1)
|
254 |
+
sigmas = self._convert_to_karras(ramp)
|
255 |
+
timesteps = self.sigma_to_t(sigmas)
|
256 |
+
|
257 |
+
sigmas = np.concatenate([sigmas, [0]]).astype(np.float32)
|
258 |
+
self.sigmas = torch.from_numpy(sigmas).to(device=device)
|
259 |
+
|
260 |
+
if str(device).startswith("mps"):
|
261 |
+
# mps does not support float64
|
262 |
+
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
|
263 |
+
else:
|
264 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device)
|
265 |
+
|
266 |
+
self._step_index = None
|
267 |
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
268 |
+
|
269 |
+
# Modified _convert_to_karras implementation that takes in ramp as argument
|
270 |
+
def _convert_to_karras(self, ramp):
|
271 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
272 |
+
|
273 |
+
sigma_min: float = self.config.sigma_min
|
274 |
+
sigma_max: float = self.config.sigma_max
|
275 |
+
|
276 |
+
rho = self.config.rho
|
277 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
278 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
279 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
280 |
+
return sigmas
|
281 |
+
|
282 |
+
def get_scalings(self, sigma):
|
283 |
+
sigma_data = self.config.sigma_data
|
284 |
+
|
285 |
+
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
286 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
287 |
+
return c_skip, c_out
|
288 |
+
|
289 |
+
def get_scalings_for_boundary_condition(self, sigma):
|
290 |
+
"""
|
291 |
+
Gets the scalings used in the consistency model parameterization (from Appendix C of the
|
292 |
+
[paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.
|
293 |
+
|
294 |
+
<Tip>
|
295 |
+
|
296 |
+
`epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.
|
297 |
+
|
298 |
+
</Tip>
|
299 |
+
|
300 |
+
Args:
|
301 |
+
sigma (`torch.FloatTensor`):
|
302 |
+
The current sigma in the Karras sigma schedule.
|
303 |
+
|
304 |
+
Returns:
|
305 |
+
`tuple`:
|
306 |
+
A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
|
307 |
+
(which weights the consistency model output) is the second element.
|
308 |
+
"""
|
309 |
+
sigma_min = self.config.sigma_min
|
310 |
+
sigma_data = self.config.sigma_data
|
311 |
+
|
312 |
+
c_skip = sigma_data**2 / ((sigma) ** 2 + sigma_data**2)
|
313 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
314 |
+
return c_skip, c_out
|
315 |
+
|
316 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
317 |
+
def _init_step_index(self, timestep):
|
318 |
+
if isinstance(timestep, torch.Tensor):
|
319 |
+
timestep = timestep.to(self.timesteps.device)
|
320 |
+
|
321 |
+
index_candidates = (self.timesteps == timestep).nonzero()
|
322 |
+
|
323 |
+
# The sigma index that is taken for the **very** first `step`
|
324 |
+
# is always the second index (or the last index if there is only 1)
|
325 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
326 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
327 |
+
if len(index_candidates) > 1:
|
328 |
+
step_index = index_candidates[1]
|
329 |
+
else:
|
330 |
+
step_index = index_candidates[0]
|
331 |
+
|
332 |
+
self._step_index = step_index.item()
|
333 |
+
|
334 |
+
def step(
|
335 |
+
self,
|
336 |
+
model_output: torch.FloatTensor,
|
337 |
+
timestep: Union[float, torch.FloatTensor],
|
338 |
+
sample: torch.FloatTensor,
|
339 |
+
generator: Optional[torch.Generator] = None,
|
340 |
+
return_dict: bool = True,
|
341 |
+
) -> Union[AnimateLCMSVDStochasticIterativeSchedulerOutput, Tuple]:
|
342 |
+
"""
|
343 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
344 |
+
process from the learned model outputs (most often the predicted noise).
|
345 |
+
|
346 |
+
Args:
|
347 |
+
model_output (`torch.FloatTensor`):
|
348 |
+
The direct output from the learned diffusion model.
|
349 |
+
timestep (`float`):
|
350 |
+
The current timestep in the diffusion chain.
|
351 |
+
sample (`torch.FloatTensor`):
|
352 |
+
A current instance of a sample created by the diffusion process.
|
353 |
+
generator (`torch.Generator`, *optional*):
|
354 |
+
A random number generator.
|
355 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
356 |
+
Whether or not to return a
|
357 |
+
[`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] or `tuple`.
|
358 |
+
|
359 |
+
Returns:
|
360 |
+
[`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] or `tuple`:
|
361 |
+
If return_dict is `True`,
|
362 |
+
[`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] is returned,
|
363 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
364 |
+
"""
|
365 |
+
|
366 |
+
if (
|
367 |
+
isinstance(timestep, int)
|
368 |
+
or isinstance(timestep, torch.IntTensor)
|
369 |
+
or isinstance(timestep, torch.LongTensor)
|
370 |
+
):
|
371 |
+
raise ValueError(
|
372 |
+
(
|
373 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
374 |
+
f" `{self.__class__}.step()` is not supported. Make sure to pass"
|
375 |
+
" one of the `scheduler.timesteps` as a timestep."
|
376 |
+
),
|
377 |
+
)
|
378 |
+
|
379 |
+
if not self.is_scale_input_called:
|
380 |
+
logger.warning(
|
381 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
382 |
+
"See `StableDiffusionPipeline` for a usage example."
|
383 |
+
)
|
384 |
+
|
385 |
+
sigma_min = self.config.sigma_min
|
386 |
+
sigma_max = self.config.sigma_max
|
387 |
+
|
388 |
+
if self.step_index is None:
|
389 |
+
self._init_step_index(timestep)
|
390 |
+
|
391 |
+
# sigma_next corresponds to next_t in original implementation
|
392 |
+
sigma = self.sigmas[self.step_index]
|
393 |
+
if self.step_index + 1 < self.config.num_train_timesteps:
|
394 |
+
sigma_next = self.sigmas[self.step_index + 1]
|
395 |
+
else:
|
396 |
+
# Set sigma_next to sigma_min
|
397 |
+
sigma_next = self.sigmas[-1]
|
398 |
+
|
399 |
+
# Get scalings for boundary conditions
|
400 |
+
|
401 |
+
c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)
|
402 |
+
|
403 |
+
# 1. Denoise model output using boundary conditions
|
404 |
+
denoised = c_out * model_output + c_skip * sample
|
405 |
+
if self.config.clip_denoised:
|
406 |
+
denoised = denoised.clamp(-1, 1)
|
407 |
+
|
408 |
+
# 2. Sample z ~ N(0, s_noise^2 * I)
|
409 |
+
# Noise is not used for onestep sampling.
|
410 |
+
if len(self.timesteps) > 1:
|
411 |
+
noise = randn_tensor(
|
412 |
+
model_output.shape,
|
413 |
+
dtype=model_output.dtype,
|
414 |
+
device=model_output.device,
|
415 |
+
generator=generator,
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
noise = torch.zeros_like(model_output)
|
419 |
+
z = noise * self.config.s_noise
|
420 |
+
|
421 |
+
sigma_hat = sigma_next.clamp(min=0, max=sigma_max)
|
422 |
+
|
423 |
+
print("denoise currently")
|
424 |
+
print(sigma_hat)
|
425 |
+
|
426 |
+
# origin
|
427 |
+
prev_sample = denoised + z * sigma_hat
|
428 |
+
|
429 |
+
# upon completion increase step index by one
|
430 |
+
self._step_index += 1
|
431 |
+
|
432 |
+
if not return_dict:
|
433 |
+
return (prev_sample,)
|
434 |
+
|
435 |
+
return AnimateLCMSVDStochasticIterativeSchedulerOutput(prev_sample=prev_sample)
|
436 |
+
|
437 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
438 |
+
def add_noise(
|
439 |
+
self,
|
440 |
+
original_samples: torch.FloatTensor,
|
441 |
+
noise: torch.FloatTensor,
|
442 |
+
timesteps: torch.FloatTensor,
|
443 |
+
) -> torch.FloatTensor:
|
444 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
445 |
+
sigmas = self.sigmas.to(
|
446 |
+
device=original_samples.device, dtype=original_samples.dtype
|
447 |
+
)
|
448 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
449 |
+
# mps does not support float64
|
450 |
+
schedule_timesteps = self.timesteps.to(
|
451 |
+
original_samples.device, dtype=torch.float32
|
452 |
+
)
|
453 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
454 |
+
else:
|
455 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
456 |
+
timesteps = timesteps.to(original_samples.device)
|
457 |
+
|
458 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
459 |
+
|
460 |
+
sigma = sigmas[step_indices].flatten()
|
461 |
+
while len(sigma.shape) < len(original_samples.shape):
|
462 |
+
sigma = sigma.unsqueeze(-1)
|
463 |
+
|
464 |
+
noisy_samples = original_samples + noise * sigma
|
465 |
+
return noisy_samples
|
466 |
+
|
467 |
+
def __len__(self):
|
468 |
+
return self.config.num_train_timesteps
|
outputs_gradio/000000.mp4
ADDED
Binary file (641 kB). View file
|
|
outputs_gradio/000001.mp4
ADDED
Binary file (848 kB). View file
|
|
outputs_gradio/000002.mp4
ADDED
Binary file (393 kB). View file
|
|
outputs_gradio/000003.mp4
ADDED
Binary file (734 kB). View file
|
|
outputs_gradio/000004.mp4
ADDED
Binary file (498 kB). View file
|
|
outputs_gradio/000005.mp4
ADDED
Binary file (373 kB). View file
|
|
pipeline.py
ADDED
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Callable, Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
23 |
+
|
24 |
+
from diffusers.image_processor import VaeImageProcessor
|
25 |
+
from diffusers.models import (
|
26 |
+
AutoencoderKLTemporalDecoder,
|
27 |
+
UNetSpatioTemporalConditionModel,
|
28 |
+
)
|
29 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
30 |
+
from diffusers.utils import BaseOutput, logging
|
31 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
32 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
36 |
+
|
37 |
+
|
38 |
+
def _append_dims(x, target_dims):
|
39 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
40 |
+
dims_to_append = target_dims - x.ndim
|
41 |
+
if dims_to_append < 0:
|
42 |
+
raise ValueError(
|
43 |
+
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
|
44 |
+
)
|
45 |
+
return x[(...,) + (None,) * dims_to_append]
|
46 |
+
|
47 |
+
|
48 |
+
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
49 |
+
# Based on:
|
50 |
+
# https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
51 |
+
|
52 |
+
batch_size, channels, num_frames, height, width = video.shape
|
53 |
+
outputs = []
|
54 |
+
for batch_idx in range(batch_size):
|
55 |
+
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
|
56 |
+
batch_output = processor.postprocess(batch_vid, output_type)
|
57 |
+
|
58 |
+
outputs.append(batch_output)
|
59 |
+
|
60 |
+
return outputs
|
61 |
+
|
62 |
+
|
63 |
+
@dataclass
|
64 |
+
class StableVideoDiffusionPipelineOutput(BaseOutput):
|
65 |
+
r"""
|
66 |
+
Output class for zero-shot text-to-video pipeline.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
|
70 |
+
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
71 |
+
num_channels)`.
|
72 |
+
"""
|
73 |
+
|
74 |
+
frames: Union[List[PIL.Image.Image], np.ndarray]
|
75 |
+
|
76 |
+
|
77 |
+
class StableVideoDiffusionPipeline(DiffusionPipeline):
|
78 |
+
r"""
|
79 |
+
Pipeline to generate video from an input image using Stable Video Diffusion.
|
80 |
+
|
81 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
82 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
83 |
+
|
84 |
+
Args:
|
85 |
+
vae ([`AutoencoderKL`]):
|
86 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
87 |
+
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
|
88 |
+
Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
|
89 |
+
unet ([`UNetSpatioTemporalConditionModel`]):
|
90 |
+
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
|
91 |
+
scheduler ([`EulerDiscreteScheduler`]):
|
92 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
93 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
94 |
+
A `CLIPImageProcessor` to extract features from generated images.
|
95 |
+
"""
|
96 |
+
|
97 |
+
model_cpu_offload_seq = "image_encoder->unet->vae"
|
98 |
+
_callback_tensor_inputs = ["latents"]
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
vae: AutoencoderKLTemporalDecoder,
|
103 |
+
image_encoder: CLIPVisionModelWithProjection,
|
104 |
+
unet: UNetSpatioTemporalConditionModel,
|
105 |
+
scheduler: EulerDiscreteScheduler,
|
106 |
+
feature_extractor: CLIPImageProcessor,
|
107 |
+
):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
self.register_modules(
|
111 |
+
vae=vae,
|
112 |
+
image_encoder=image_encoder,
|
113 |
+
unet=unet,
|
114 |
+
scheduler=scheduler,
|
115 |
+
feature_extractor=feature_extractor,
|
116 |
+
)
|
117 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
118 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
119 |
+
|
120 |
+
def _encode_image(
|
121 |
+
self, image, device, num_videos_per_prompt, do_classifier_free_guidance
|
122 |
+
):
|
123 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
124 |
+
|
125 |
+
if not isinstance(image, torch.Tensor):
|
126 |
+
image = self.image_processor.pil_to_numpy(image)
|
127 |
+
image = self.image_processor.numpy_to_pt(image)
|
128 |
+
|
129 |
+
# We normalize the image before resizing to match with the original implementation.
|
130 |
+
# Then we unnormalize it after resizing.
|
131 |
+
image = image * 2.0 - 1.0
|
132 |
+
image = _resize_with_antialiasing(image, (224, 224))
|
133 |
+
image = (image + 1.0) / 2.0
|
134 |
+
|
135 |
+
# Normalize the image with for CLIP input
|
136 |
+
image = self.feature_extractor(
|
137 |
+
images=image,
|
138 |
+
do_normalize=True,
|
139 |
+
do_center_crop=False,
|
140 |
+
do_resize=False,
|
141 |
+
do_rescale=False,
|
142 |
+
return_tensors="pt",
|
143 |
+
).pixel_values
|
144 |
+
|
145 |
+
image = image.to(device=device, dtype=dtype)
|
146 |
+
image_embeddings = self.image_encoder(image).image_embeds
|
147 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
148 |
+
|
149 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
150 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
151 |
+
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
|
152 |
+
image_embeddings = image_embeddings.view(
|
153 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
154 |
+
)
|
155 |
+
|
156 |
+
if do_classifier_free_guidance:
|
157 |
+
negative_image_embeddings = torch.zeros_like(image_embeddings)
|
158 |
+
|
159 |
+
# For classifier free guidance, we need to do two forward passes.
|
160 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
161 |
+
# to avoid doing two forward passes
|
162 |
+
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
|
163 |
+
|
164 |
+
return image_embeddings
|
165 |
+
|
166 |
+
def _encode_vae_image(
|
167 |
+
self,
|
168 |
+
image: torch.Tensor,
|
169 |
+
device,
|
170 |
+
num_videos_per_prompt,
|
171 |
+
do_classifier_free_guidance,
|
172 |
+
):
|
173 |
+
image = image.to(device=device)
|
174 |
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
175 |
+
|
176 |
+
if do_classifier_free_guidance:
|
177 |
+
negative_image_latents = torch.zeros_like(image_latents)
|
178 |
+
|
179 |
+
# For classifier free guidance, we need to do two forward passes.
|
180 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
181 |
+
# to avoid doing two forward passes
|
182 |
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
183 |
+
|
184 |
+
# duplicate image_latents for each generation per prompt, using mps friendly method
|
185 |
+
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
|
186 |
+
|
187 |
+
return image_latents
|
188 |
+
|
189 |
+
def _get_add_time_ids(
|
190 |
+
self,
|
191 |
+
fps,
|
192 |
+
motion_bucket_id,
|
193 |
+
noise_aug_strength,
|
194 |
+
dtype,
|
195 |
+
batch_size,
|
196 |
+
num_videos_per_prompt,
|
197 |
+
do_classifier_free_guidance,
|
198 |
+
):
|
199 |
+
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
|
200 |
+
|
201 |
+
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(
|
202 |
+
add_time_ids
|
203 |
+
)
|
204 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
205 |
+
|
206 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
207 |
+
raise ValueError(
|
208 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
209 |
+
)
|
210 |
+
|
211 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
212 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
|
213 |
+
|
214 |
+
if do_classifier_free_guidance:
|
215 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids])
|
216 |
+
|
217 |
+
return add_time_ids
|
218 |
+
|
219 |
+
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
|
220 |
+
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
|
221 |
+
latents = latents.flatten(0, 1)
|
222 |
+
|
223 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
224 |
+
|
225 |
+
forward_vae_fn = (
|
226 |
+
self.vae._orig_mod.forward
|
227 |
+
if is_compiled_module(self.vae)
|
228 |
+
else self.vae.forward
|
229 |
+
)
|
230 |
+
accepts_num_frames = "num_frames" in set(
|
231 |
+
inspect.signature(forward_vae_fn).parameters.keys()
|
232 |
+
)
|
233 |
+
|
234 |
+
# decode decode_chunk_size frames at a time to avoid OOM
|
235 |
+
frames = []
|
236 |
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
237 |
+
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
|
238 |
+
decode_kwargs = {}
|
239 |
+
if accepts_num_frames:
|
240 |
+
# we only pass num_frames_in if it's expected
|
241 |
+
decode_kwargs["num_frames"] = num_frames_in
|
242 |
+
|
243 |
+
frame = self.vae.decode(
|
244 |
+
latents[i : i + decode_chunk_size], **decode_kwargs
|
245 |
+
).sample
|
246 |
+
frames.append(frame)
|
247 |
+
frames = torch.cat(frames, dim=0)
|
248 |
+
|
249 |
+
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
250 |
+
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(
|
251 |
+
0, 2, 1, 3, 4
|
252 |
+
)
|
253 |
+
|
254 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
255 |
+
frames = frames.float()
|
256 |
+
return frames
|
257 |
+
|
258 |
+
def check_inputs(self, image, height, width):
|
259 |
+
if (
|
260 |
+
not isinstance(image, torch.Tensor)
|
261 |
+
and not isinstance(image, PIL.Image.Image)
|
262 |
+
and not isinstance(image, list)
|
263 |
+
):
|
264 |
+
raise ValueError(
|
265 |
+
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
266 |
+
f" {type(image)}"
|
267 |
+
)
|
268 |
+
|
269 |
+
if height % 8 != 0 or width % 8 != 0:
|
270 |
+
raise ValueError(
|
271 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
272 |
+
)
|
273 |
+
|
274 |
+
def prepare_latents(
|
275 |
+
self,
|
276 |
+
batch_size,
|
277 |
+
num_frames,
|
278 |
+
num_channels_latents,
|
279 |
+
height,
|
280 |
+
width,
|
281 |
+
dtype,
|
282 |
+
device,
|
283 |
+
generator,
|
284 |
+
latents=None,
|
285 |
+
):
|
286 |
+
shape = (
|
287 |
+
batch_size,
|
288 |
+
num_frames,
|
289 |
+
num_channels_latents // 2,
|
290 |
+
height // self.vae_scale_factor,
|
291 |
+
width // self.vae_scale_factor,
|
292 |
+
)
|
293 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
294 |
+
raise ValueError(
|
295 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
296 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
297 |
+
)
|
298 |
+
|
299 |
+
if latents is None:
|
300 |
+
latents = randn_tensor(
|
301 |
+
shape, generator=generator, device=device, dtype=dtype
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
latents = latents.to(device)
|
305 |
+
|
306 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
307 |
+
latents = latents * self.scheduler.init_noise_sigma
|
308 |
+
return latents
|
309 |
+
|
310 |
+
@property
|
311 |
+
def guidance_scale(self):
|
312 |
+
return self._guidance_scale
|
313 |
+
|
314 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
315 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
316 |
+
# corresponds to doing no classifier free guidance.
|
317 |
+
@property
|
318 |
+
def do_classifier_free_guidance(self):
|
319 |
+
if isinstance(self.guidance_scale, (int, float)):
|
320 |
+
return self.guidance_scale > 1
|
321 |
+
return self.guidance_scale.max() > 1
|
322 |
+
|
323 |
+
@property
|
324 |
+
def num_timesteps(self):
|
325 |
+
return self._num_timesteps
|
326 |
+
|
327 |
+
@torch.no_grad()
|
328 |
+
def __call__(
|
329 |
+
self,
|
330 |
+
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
|
331 |
+
height: int = 576,
|
332 |
+
width: int = 1024,
|
333 |
+
num_frames: Optional[int] = None,
|
334 |
+
num_inference_steps: int = 25,
|
335 |
+
min_guidance_scale: float = 1.0,
|
336 |
+
max_guidance_scale: float = 3.0,
|
337 |
+
fps: int = 7,
|
338 |
+
motion_bucket_id: int = 127,
|
339 |
+
noise_aug_strength: int = 0.02,
|
340 |
+
decode_chunk_size: Optional[int] = None,
|
341 |
+
num_videos_per_prompt: Optional[int] = 1,
|
342 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
343 |
+
latents: Optional[torch.FloatTensor] = None,
|
344 |
+
output_type: Optional[str] = "pil",
|
345 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
346 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
347 |
+
return_dict: bool = True,
|
348 |
+
):
|
349 |
+
r"""
|
350 |
+
The call function to the pipeline for generation.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
|
354 |
+
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
|
355 |
+
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
|
356 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
357 |
+
The height in pixels of the generated image.
|
358 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
359 |
+
The width in pixels of the generated image.
|
360 |
+
num_frames (`int`, *optional*):
|
361 |
+
The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`
|
362 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
363 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
364 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
365 |
+
min_guidance_scale (`float`, *optional*, defaults to 1.0):
|
366 |
+
The minimum guidance scale. Used for the classifier free guidance with first frame.
|
367 |
+
max_guidance_scale (`float`, *optional*, defaults to 3.0):
|
368 |
+
The maximum guidance scale. Used for the classifier free guidance with last frame.
|
369 |
+
fps (`int`, *optional*, defaults to 7):
|
370 |
+
Frames per second. The rate at which the generated images shall be exported to a video after generation.
|
371 |
+
Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
|
372 |
+
motion_bucket_id (`int`, *optional*, defaults to 127):
|
373 |
+
The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video.
|
374 |
+
noise_aug_strength (`int`, *optional*, defaults to 0.02):
|
375 |
+
The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.
|
376 |
+
decode_chunk_size (`int`, *optional*):
|
377 |
+
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
|
378 |
+
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
|
379 |
+
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
|
380 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
381 |
+
The number of images to generate per prompt.
|
382 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
383 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
384 |
+
generation deterministic.
|
385 |
+
latents (`torch.FloatTensor`, *optional*):
|
386 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
387 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
388 |
+
tensor is generated by sampling using the supplied random `generator`.
|
389 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
390 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
391 |
+
callback_on_step_end (`Callable`, *optional*):
|
392 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
393 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
394 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
395 |
+
`callback_on_step_end_tensor_inputs`.
|
396 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
397 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
398 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
399 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
400 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
401 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
402 |
+
plain tuple.
|
403 |
+
|
404 |
+
Returns:
|
405 |
+
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
|
406 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned,
|
407 |
+
otherwise a `tuple` is returned where the first element is a list of list with the generated frames.
|
408 |
+
|
409 |
+
Examples:
|
410 |
+
|
411 |
+
```py
|
412 |
+
from diffusers import StableVideoDiffusionPipeline
|
413 |
+
from diffusers.utils import load_image, export_to_video
|
414 |
+
|
415 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16")
|
416 |
+
pipe.to("cuda")
|
417 |
+
|
418 |
+
image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200")
|
419 |
+
image = image.resize((1024, 576))
|
420 |
+
|
421 |
+
frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
|
422 |
+
export_to_video(frames, "generated.mp4", fps=7)
|
423 |
+
```
|
424 |
+
"""
|
425 |
+
# 0. Default height and width to unet
|
426 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
427 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
428 |
+
|
429 |
+
num_frames = (
|
430 |
+
num_frames if num_frames is not None else self.unet.config.num_frames
|
431 |
+
)
|
432 |
+
decode_chunk_size = (
|
433 |
+
decode_chunk_size if decode_chunk_size is not None else num_frames
|
434 |
+
)
|
435 |
+
|
436 |
+
# 1. Check inputs. Raise error if not correct
|
437 |
+
self.check_inputs(image, height, width)
|
438 |
+
|
439 |
+
# 2. Define call parameters
|
440 |
+
if isinstance(image, PIL.Image.Image):
|
441 |
+
batch_size = 1
|
442 |
+
elif isinstance(image, list):
|
443 |
+
batch_size = len(image)
|
444 |
+
else:
|
445 |
+
batch_size = image.shape[0]
|
446 |
+
device = self._execution_device
|
447 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
448 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
449 |
+
# corresponds to doing no classifier free guidance.
|
450 |
+
self._guidance_scale = max_guidance_scale
|
451 |
+
|
452 |
+
# 3. Encode input image
|
453 |
+
image_embeddings = self._encode_image(
|
454 |
+
image, device, num_videos_per_prompt, self.do_classifier_free_guidance
|
455 |
+
)
|
456 |
+
|
457 |
+
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
|
458 |
+
# is why it is reduced here.
|
459 |
+
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
|
460 |
+
fps = fps - 1
|
461 |
+
|
462 |
+
# 4. Encode input image using VAE
|
463 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
464 |
+
noise = randn_tensor(
|
465 |
+
image.shape, generator=generator, device=image.device, dtype=image.dtype
|
466 |
+
)
|
467 |
+
image = image + noise_aug_strength * noise
|
468 |
+
|
469 |
+
needs_upcasting = (
|
470 |
+
self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
471 |
+
)
|
472 |
+
if needs_upcasting:
|
473 |
+
self.vae.to(dtype=torch.float32)
|
474 |
+
|
475 |
+
image_latents = self._encode_vae_image(
|
476 |
+
image, device, num_videos_per_prompt, self.do_classifier_free_guidance
|
477 |
+
)
|
478 |
+
image_latents = image_latents.to(image_embeddings.dtype)
|
479 |
+
|
480 |
+
# cast back to fp16 if needed
|
481 |
+
if needs_upcasting:
|
482 |
+
self.vae.to(dtype=torch.float16)
|
483 |
+
|
484 |
+
# Repeat the image latents for each frame so we can concatenate them with the noise
|
485 |
+
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
|
486 |
+
image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
|
487 |
+
|
488 |
+
# 5. Get Added Time IDs
|
489 |
+
added_time_ids = self._get_add_time_ids(
|
490 |
+
fps,
|
491 |
+
motion_bucket_id,
|
492 |
+
noise_aug_strength,
|
493 |
+
image_embeddings.dtype,
|
494 |
+
batch_size,
|
495 |
+
num_videos_per_prompt,
|
496 |
+
self.do_classifier_free_guidance,
|
497 |
+
)
|
498 |
+
added_time_ids = added_time_ids.to(device)
|
499 |
+
|
500 |
+
# 4. Prepare timesteps
|
501 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
502 |
+
print("converted after karras", self.scheduler.sigmas)
|
503 |
+
timesteps = self.scheduler.timesteps
|
504 |
+
|
505 |
+
# 5. Prepare latent variables
|
506 |
+
num_channels_latents = self.unet.config.in_channels
|
507 |
+
latents = self.prepare_latents(
|
508 |
+
batch_size * num_videos_per_prompt,
|
509 |
+
num_frames,
|
510 |
+
num_channels_latents,
|
511 |
+
height,
|
512 |
+
width,
|
513 |
+
image_embeddings.dtype,
|
514 |
+
device,
|
515 |
+
generator,
|
516 |
+
latents,
|
517 |
+
)
|
518 |
+
|
519 |
+
# 7. Prepare guidance scale
|
520 |
+
guidance_scale = torch.linspace(
|
521 |
+
min_guidance_scale, max_guidance_scale, num_frames
|
522 |
+
).unsqueeze(0)
|
523 |
+
guidance_scale = guidance_scale.to(device, latents.dtype)
|
524 |
+
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
|
525 |
+
guidance_scale = _append_dims(guidance_scale, latents.ndim)
|
526 |
+
|
527 |
+
self._guidance_scale = guidance_scale
|
528 |
+
|
529 |
+
# 8. Denoising loop
|
530 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
531 |
+
self._num_timesteps = len(timesteps)
|
532 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
533 |
+
for i, t in enumerate(timesteps):
|
534 |
+
# expand the latents if we are doing classifier free guidance
|
535 |
+
latent_model_input = (
|
536 |
+
torch.cat([latents] * 2)
|
537 |
+
if self.do_classifier_free_guidance
|
538 |
+
else latents
|
539 |
+
)
|
540 |
+
latent_model_input = self.scheduler.scale_model_input(
|
541 |
+
latent_model_input, t
|
542 |
+
)
|
543 |
+
|
544 |
+
# Concatenate image_latents over channels dimention
|
545 |
+
latent_model_input = torch.cat(
|
546 |
+
[latent_model_input, image_latents], dim=2
|
547 |
+
)
|
548 |
+
|
549 |
+
# predict the noise residual
|
550 |
+
noise_pred = self.unet(
|
551 |
+
latent_model_input,
|
552 |
+
t,
|
553 |
+
encoder_hidden_states=image_embeddings,
|
554 |
+
added_time_ids=added_time_ids,
|
555 |
+
return_dict=False,
|
556 |
+
)[0]
|
557 |
+
|
558 |
+
# perform guidance
|
559 |
+
if self.do_classifier_free_guidance:
|
560 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
561 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
562 |
+
noise_pred_cond - noise_pred_uncond
|
563 |
+
)
|
564 |
+
|
565 |
+
# compute the previous noisy sample x_t -> x_t-1
|
566 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
567 |
+
|
568 |
+
if callback_on_step_end is not None:
|
569 |
+
callback_kwargs = {}
|
570 |
+
for k in callback_on_step_end_tensor_inputs:
|
571 |
+
callback_kwargs[k] = locals()[k]
|
572 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
573 |
+
|
574 |
+
latents = callback_outputs.pop("latents", latents)
|
575 |
+
|
576 |
+
if i == len(timesteps) - 1 or (
|
577 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
578 |
+
):
|
579 |
+
progress_bar.update()
|
580 |
+
|
581 |
+
if not output_type == "latent":
|
582 |
+
# cast back to fp16 if needed
|
583 |
+
if needs_upcasting:
|
584 |
+
self.vae.to(dtype=torch.float16)
|
585 |
+
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
|
586 |
+
frames = tensor2vid(frames, self.image_processor, output_type=output_type)
|
587 |
+
else:
|
588 |
+
frames = latents
|
589 |
+
|
590 |
+
self.maybe_free_model_hooks()
|
591 |
+
|
592 |
+
if not return_dict:
|
593 |
+
return frames
|
594 |
+
|
595 |
+
return StableVideoDiffusionPipelineOutput(frames=frames)
|
596 |
+
|
597 |
+
|
598 |
+
# resizing utils
|
599 |
+
# TODO: clean up later
|
600 |
+
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
|
601 |
+
h, w = input.shape[-2:]
|
602 |
+
factors = (h / size[0], w / size[1])
|
603 |
+
|
604 |
+
# First, we have to determine sigma
|
605 |
+
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
|
606 |
+
sigmas = (
|
607 |
+
max((factors[0] - 1.0) / 2.0, 0.001),
|
608 |
+
max((factors[1] - 1.0) / 2.0, 0.001),
|
609 |
+
)
|
610 |
+
|
611 |
+
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
|
612 |
+
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
|
613 |
+
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
|
614 |
+
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
|
615 |
+
|
616 |
+
# Make sure it is odd
|
617 |
+
if (ks[0] % 2) == 0:
|
618 |
+
ks = ks[0] + 1, ks[1]
|
619 |
+
|
620 |
+
if (ks[1] % 2) == 0:
|
621 |
+
ks = ks[0], ks[1] + 1
|
622 |
+
|
623 |
+
input = _gaussian_blur2d(input, ks, sigmas)
|
624 |
+
|
625 |
+
output = torch.nn.functional.interpolate(
|
626 |
+
input, size=size, mode=interpolation, align_corners=align_corners
|
627 |
+
)
|
628 |
+
return output
|
629 |
+
|
630 |
+
|
631 |
+
def _compute_padding(kernel_size):
|
632 |
+
"""Compute padding tuple."""
|
633 |
+
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
|
634 |
+
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
|
635 |
+
if len(kernel_size) < 2:
|
636 |
+
raise AssertionError(kernel_size)
|
637 |
+
computed = [k - 1 for k in kernel_size]
|
638 |
+
|
639 |
+
# for even kernels we need to do asymmetric padding :(
|
640 |
+
out_padding = 2 * len(kernel_size) * [0]
|
641 |
+
|
642 |
+
for i in range(len(kernel_size)):
|
643 |
+
computed_tmp = computed[-(i + 1)]
|
644 |
+
|
645 |
+
pad_front = computed_tmp // 2
|
646 |
+
pad_rear = computed_tmp - pad_front
|
647 |
+
|
648 |
+
out_padding[2 * i + 0] = pad_front
|
649 |
+
out_padding[2 * i + 1] = pad_rear
|
650 |
+
|
651 |
+
return out_padding
|
652 |
+
|
653 |
+
|
654 |
+
def _filter2d(input, kernel):
|
655 |
+
# prepare kernel
|
656 |
+
b, c, h, w = input.shape
|
657 |
+
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
|
658 |
+
|
659 |
+
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
|
660 |
+
|
661 |
+
height, width = tmp_kernel.shape[-2:]
|
662 |
+
|
663 |
+
padding_shape: list[int] = _compute_padding([height, width])
|
664 |
+
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
665 |
+
|
666 |
+
# kernel and input tensor reshape to align element-wise or batch-wise params
|
667 |
+
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
|
668 |
+
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
|
669 |
+
|
670 |
+
# convolve the tensor with the kernel.
|
671 |
+
output = torch.nn.functional.conv2d(
|
672 |
+
input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1
|
673 |
+
)
|
674 |
+
|
675 |
+
out = output.view(b, c, h, w)
|
676 |
+
return out
|
677 |
+
|
678 |
+
|
679 |
+
def _gaussian(window_size: int, sigma):
|
680 |
+
if isinstance(sigma, float):
|
681 |
+
sigma = torch.tensor([[sigma]])
|
682 |
+
|
683 |
+
batch_size = sigma.shape[0]
|
684 |
+
|
685 |
+
x = (
|
686 |
+
torch.arange(window_size, device=sigma.device, dtype=sigma.dtype)
|
687 |
+
- window_size // 2
|
688 |
+
).expand(batch_size, -1)
|
689 |
+
|
690 |
+
if window_size % 2 == 0:
|
691 |
+
x = x + 0.5
|
692 |
+
|
693 |
+
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
|
694 |
+
|
695 |
+
return gauss / gauss.sum(-1, keepdim=True)
|
696 |
+
|
697 |
+
|
698 |
+
def _gaussian_blur2d(input, kernel_size, sigma):
|
699 |
+
if isinstance(sigma, tuple):
|
700 |
+
sigma = torch.tensor([sigma], dtype=input.dtype)
|
701 |
+
else:
|
702 |
+
sigma = sigma.to(dtype=input.dtype)
|
703 |
+
|
704 |
+
ky, kx = int(kernel_size[0]), int(kernel_size[1])
|
705 |
+
bs = sigma.shape[0]
|
706 |
+
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
|
707 |
+
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
|
708 |
+
out_x = _filter2d(input, kernel_x[..., None, :])
|
709 |
+
out = _filter2d(out_x, kernel_y[..., None])
|
710 |
+
|
711 |
+
return out
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.25.1
|
2 |
+
gradio==4.19.2
|
3 |
+
Pillow==10.2.0
|
4 |
+
torch==2.2.0
|
safetensors/AnimateLCM-SVD-xt-1.1.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94b2da1fcca8d03458ef0b07b94b4c55f94117cb0d90265c6c8452239ecc166e
|
3 |
+
size 6098682464
|
safetensors/AnimateLCM-SVD-xt.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ca55e35f29437e8a65e8a1a9ce75262d5bab3d4fe137bdc3f3a94512c54b377
|
3 |
+
size 6098682464
|
test_imgs/ai-generated-8255456_1280.png
ADDED
Git LFS Details
|
test_imgs/ai-generated-8411866_1280.jpg
ADDED
test_imgs/ai-generated-8463496_1280.jpg
ADDED
test_imgs/ai-generated-8476858_1280.png
ADDED
test_imgs/ai-generated-8479572_1280.jpg
ADDED
test_imgs/ai-generated-8481641_1280.jpg
ADDED
test_imgs/ai-generated-8489879_1280.png
ADDED
Git LFS Details
|
test_imgs/ai-generated-8496135_1280.jpg
ADDED
test_imgs/ai-generated-8496952_1280.jpg
ADDED
test_imgs/ai-generated-8498844_1280.jpg
ADDED
test_imgs/bird-7411270_1280.jpg
ADDED
test_imgs/bird-7586857_1280.jpg
ADDED
test_imgs/bird-8014191_1280.jpg
ADDED
test_imgs/couple-8019370_1280.jpg
ADDED
test_imgs/cupcakes-380178_1280.jpg
ADDED
test_imgs/dog-7330712_1280.jpg
ADDED
test_imgs/dog-7396912_1280.jpg
ADDED
test_imgs/girl-4898696_1280.jpg
ADDED
test_imgs/grey-capped-flycatcher-8071233_1280.jpg
ADDED
test_imgs/halloween-4585684_1280.jpg
ADDED
test_imgs/leaf-7260246_1280.jpg
ADDED
test_imgs/meerkat-7465819_1280.jpg
ADDED
test_imgs/mobile-phone-1875813_1280.jpg
ADDED
test_imgs/mother-8097324_1280.jpg
ADDED
test_imgs/plane-8145957_1280.jpg
ADDED
test_imgs/power-station-6579092_1280.jpg
ADDED
test_imgs/ship-7833921_1280.jpg
ADDED
test_imgs/sleep-7871915_1280.jpg
ADDED
test_imgs/squirrel-7985502_1280.jpg
ADDED
test_imgs/squirrel-8211238_1280.jpg
ADDED
test_imgs/training-8122941_1280.jpg
ADDED