Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,17 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import re
|
3 |
import torch
|
4 |
from transformers import pipeline
|
@@ -26,7 +39,9 @@ instruction = f"""
|
|
26 |
<|user|>
|
27 |
"""
|
28 |
|
29 |
-
def infer(
|
|
|
|
|
30 |
prompt = f"{instruction.strip()}\n{user_prompt}</s>"
|
31 |
print(f"PROMPT: {prompt}")
|
32 |
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
@@ -41,7 +56,7 @@ def infer(user_prompt):
|
|
41 |
gr.Interface(
|
42 |
fn = infer,
|
43 |
inputs = [
|
44 |
-
gr.
|
45 |
],
|
46 |
outputs = [
|
47 |
gr.Textbox()
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_client import Client
|
3 |
+
|
4 |
+
fusecap_client = Client("https://noamrot-fusecap-image-captioning.hf.space/")
|
5 |
+
|
6 |
+
def get_caption(image_in):
|
7 |
+
|
8 |
+
fusecap_result = fusecap_client.predict(
|
9 |
+
image_in, # str representing input in 'raw_image' Image component
|
10 |
+
api_name="/predict"
|
11 |
+
)
|
12 |
+
print(fusecap_result)
|
13 |
+
return fusecap_result
|
14 |
+
|
15 |
import re
|
16 |
import torch
|
17 |
from transformers import pipeline
|
|
|
39 |
<|user|>
|
40 |
"""
|
41 |
|
42 |
+
def infer(image_in):
|
43 |
+
|
44 |
+
user_prompt = get_caption(image_in)
|
45 |
prompt = f"{instruction.strip()}\n{user_prompt}</s>"
|
46 |
print(f"PROMPT: {prompt}")
|
47 |
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
|
|
56 |
gr.Interface(
|
57 |
fn = infer,
|
58 |
inputs = [
|
59 |
+
gr.Image(type="filepath")
|
60 |
],
|
61 |
outputs = [
|
62 |
gr.Textbox()
|