Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
# Load model and tokenizer from Hugging Face Model Hub | |
model_name = "farelzii/GEC_Test_v1" | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
def correct_text(input_text): | |
# Tokenize the input text | |
inputs = tokenizer.encode("correct: " + input_text, return_tensors="pt") | |
# Generate the corrected text | |
outputs = model.generate(inputs, max_length=128, num_beams=4, early_stopping=True) | |
# Decode the generated text | |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return corrected_text | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=correct_text, | |
inputs=gr.Textbox(lines=2, placeholder="Enter text with grammar errors here..."), | |
outputs="text", | |
title="Grammar Correction", | |
description="Enter a sentence with grammatical errors and get the corrected sentence." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |