File size: 5,450 Bytes
bc48646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import openai

os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OPENAI_API_KEY"]


def save_docs(docs):

    import shutil
    import os

    output_dir = "/home/user/app/docs/"

    if os.path.exists(output_dir):
        shutil.rmtree(output_dir)

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    for doc in docs:
        shutil.copy(doc.name, output_dir)

    return "Successful!"


def process_docs():

    from langchain.document_loaders import PyPDFLoader
    from langchain.document_loaders import DirectoryLoader
    from langchain.document_loaders import TextLoader
    from langchain.document_loaders import Docx2txtLoader
    from langchain.document_loaders.csv_loader import CSVLoader
    from langchain.document_loaders import UnstructuredExcelLoader
    from langchain.vectorstores import FAISS
    from langchain_openai import OpenAIEmbeddings
    from langchain.text_splitter import RecursiveCharacterTextSplitter

    loader1 = DirectoryLoader(
        "/home/user/app/docs/", glob="./*.pdf", loader_cls=PyPDFLoader
    )
    document1 = loader1.load()

    loader2 = DirectoryLoader(
        "/home/user/app/docs/", glob="./*.txt", loader_cls=TextLoader
    )
    document2 = loader2.load()

    loader3 = DirectoryLoader(
        "/home/user/app/docs/", glob="./*.docx", loader_cls=Docx2txtLoader
    )
    document3 = loader3.load()

    loader4 = DirectoryLoader(
        "/home/user/app/docs/", glob="./*.csv", loader_cls=CSVLoader
    )
    document4 = loader4.load()

    loader5 = DirectoryLoader(
        "/home/user/app/docs/", glob="./*.xlsx", loader_cls=UnstructuredExcelLoader
    )
    document5 = loader5.load()

    document1.extend(document2)
    document1.extend(document3)
    document1.extend(document4)
    document1.extend(document5)

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000, chunk_overlap=200, length_function=len
    )

    docs = text_splitter.split_documents(document1)
    embeddings = OpenAIEmbeddings()

    docs_db = FAISS.from_documents(docs, embeddings)
    docs_db.save_local("/home/user/app/docs_db/")

    return "Successful!"


global agent


def create_agent():

    from langchain_openai import ChatOpenAI
    from langchain.chains.conversation.memory import ConversationSummaryBufferMemory
    from langchain.chains import ConversationChain

    global agent

    llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
    memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=1000)
    agent = ConversationChain(llm=llm, memory=memory, verbose=True)

    return "Successful!"


def formatted_response(docs, question, response, state):

    formatted_output = response + "\n\nSources"

    for i, doc in enumerate(docs):
        source_info = doc.metadata.get("source", "Unknown source")
        page_info = doc.metadata.get("page", None)

        doc_name = source_info.split("/")[-1].strip()

        if page_info is not None:
            formatted_output += f"\n{doc_name}\tpage no {page_info}"
        else:
            formatted_output += f"\n{doc_name}"

    state.append((question, formatted_output))
    return state, state


def search_docs(prompt, question, state):

    from langchain_openai import OpenAIEmbeddings
    from langchain.vectorstores import FAISS
    from langchain.callbacks import get_openai_callback

    global agent
    agent = agent

    state = state or []

    embeddings = OpenAIEmbeddings()
    docs_db = FAISS.load_local(
        "/home/user/app/docs_db/", embeddings, allow_dangerous_deserialization=True
    )
    docs = docs_db.similarity_search(question)

    prompt += "\n\n"
    prompt += question
    prompt += "\n\n"
    prompt += str(docs)

    with get_openai_callback() as cb:
        response = agent.predict(input=prompt)
        print(cb)

    return formatted_response(docs, question, response, state)


import gradio as gr

css = """
.col{
    max-width: 75%;
    margin: 0 auto;
    display: flex;
    flex-direction: column;
    justify-content: center;
    align-items: center;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("## <center>Your AI Medical Assistant</center>")

    with gr.Tab("Your AI Medical Assistant"):
        with gr.Column(elem_classes="col"):

            with gr.Tab("Query Documents"):
                with gr.Column():
                    create_agent_button = gr.Button("Create Agent")
                    create_agent_output = gr.Textbox(label="Output")

                    docs_prompt_input = gr.Textbox(label="Custom Prompt")

                    docs_chatbot = gr.Chatbot(label="Chats")
                    docs_state = gr.State()

                    docs_search_input = gr.Textbox(label="Question")
                    docs_search_button = gr.Button("Search")

                    gr.ClearButton(
                        [docs_prompt_input, docs_search_input, create_agent_output]
                    )

    #########################################################################################################

    create_agent_button.click(create_agent, inputs=None, outputs=create_agent_output)

    docs_search_button.click(
        search_docs,
        inputs=[docs_prompt_input, docs_search_input, docs_state],
        outputs=[docs_chatbot, docs_state],
    )

    #########################################################################################################

demo.queue()
demo.launch()