Spaces:
Runtime error
Runtime error
File size: 7,663 Bytes
515afcc 66b9ebf 515afcc 66b9ebf 515afcc 66b9ebf 515afcc 66b9ebf 515afcc 66b9ebf 515afcc 9313ffe 515afcc 66b9ebf 515afcc 66b9ebf 515afcc 66b9ebf 515afcc 66b9ebf 515afcc a7914be 515afcc 66b9ebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import open_clip
import torch
# Load model and tokenizer
DEVICE='cpu'
model, preprocess = open_clip.create_model_from_pretrained('hf-hub:woweenie/open-clip-vit-h-nsfw-finetune', device=DEVICE)
tokenizer = open_clip.get_tokenizer('hf-hub:woweenie/open-clip-vit-h-nsfw-finetune')
# Define labels
type_labels = ['2.5d render', '3d render', 'photograph', 'anime drawing', 'drawing', 'illustration', 'painting', 'pre-raphaelite painting', 'concept artwork', 'screenshot']
scene_labels = ['in an airport', 'in the bath', 'on a bed', 'in bed', 'in a bedroom', 'at the beach', 'on a boat', 'in a tent', 'in a car', 'on a chair', 'in the city', 'in a dressing room', 'on the floor', 'at the gym', 'in a hotel room', 'in a kitchen', 'in a living room', 'in an office', 'by a harbor', 'on a bench', 'in a park', 'by a piano', 'on a forest road', 'in a forest', 'in a garden', 'at a lake', 'on the grass', 'on the ground', 'on a paved surface', 'outdoors, on a rock', 'outdoors, on a rug', 'outdoors, on a towel', 'in a photo studio', 'at the pool', 'at a river', 'on a road', 'by the sea', 'showering', 'in the shower', 'on a stool', 'on a rug', 'on a rock', 'on a sofa', 'on a table', 'at a table', 'in a store', 'on snow', 'by a waterfall', 'with a water feature', 'on a windowsill']
expression_labels = ['scared', 'annoyed', 'aroused', 'bored', 'confident', 'distracted', 'dominating', 'embarrassed', 'scared', 'laughing', 'shy', 'orgasm']
clothing_labels = ['a bikini that is too small', 'bikini bottoms', 'a bikini top', 'a bikini', 'a bodysuit', 'a bra', 'a crop top', 'a dress', 'garters', 'glasses', 'goggles', 'gym shorts', 'a halter top', 'a hat', 'a handbra', 'a hoodie', 'a jacket', 'jeans', 'a jumper', 'a gown', 'a lace-up top', 'leggings', 'lingerie', 'a long sleeved top', 'a off-shoulder top', 'a nightgown', 'a coat', 'overalls', 'pink pajamas', 'pajamas', 'panties', 'pantyhose', 'a t-shirt', 'a robe', 'a bathrobe', 'a piece of fabric', 'a scarf', 'a shirt', 'shorts', 'a skirt', 'a sleeveless top', 'a slip', 'sneakers', 'tube socks', 'a sports bra', 'sunglasses', 'sweatpants', 'a one piece swimsuit', 'a t-shirt', 'a tank top', 'a tied shirt', 'a top', 'long pants', 'a wetsuit', 'a backpack', 'high hem', 'see-through', 'short', 'tight']
clothing_labels = ['wearing ' + label for label in clothing_labels]
def process_image_separate_tags(image):
# Preprocess image
image = preprocess(image).unsqueeze(0).to(DEVICE)
# Tokenize labels
type_text = tokenizer(type_labels).to(DEVICE)
scene_text = tokenizer(scene_labels).to(DEVICE)
expression_text = tokenizer(expression_labels).to(DEVICE)
clothing_text = tokenizer(clothing_labels).to(DEVICE)
with torch.no_grad():
# Encode image and text
image_features = model.encode_image(image)
type_text_features = model.encode_text(type_text)
scene_text_features = model.encode_text(scene_text)
expression_text_features = model.encode_text(expression_text)
clothing_text_features = model.encode_text(clothing_text)
# Normalize features
image_features /= image_features.norm(dim=-1, keepdim=True)
type_text_features /= type_text_features.norm(dim=-1, keepdim=True)
scene_text_features /= scene_text_features.norm(dim=-1, keepdim=True)
expression_text_features /= expression_text_features.norm(dim=-1, keepdim=True)
clothing_text_features /= clothing_text_features.norm(dim=-1, keepdim=True)
# Calculate cosine similarities and apply softmax
# Using temperature parameter to control the "sharpness" of the distribution
temperature = 0.1 # Lower values make the distribution more peaked
type_text_probs = torch.softmax(image_features @ type_text_features.T / temperature, dim=-1)
scene_text_probs = torch.softmax(image_features @ scene_text_features.T / temperature, dim=-1)
expression_text_probs = torch.softmax(image_features @ expression_text_features.T / temperature, dim=-1)
clothing_text_probs = torch.softmax(image_features @ clothing_text_features.T / temperature, dim=-1)
# Convert to dictionaries
type_results = {label: float(type_text_probs[0][i]) for i, label in enumerate(type_labels)}
scene_results = {label: float(scene_text_probs[0][i]) for i, label in enumerate(scene_labels)}
expression_results = {label: float(expression_text_probs[0][i]) for i, label in enumerate(expression_labels)}
clothing_results = {label: float(clothing_text_probs[0][i]) for i, label in enumerate(clothing_labels)}
return type_results, scene_results, expression_results, clothing_results
def process_image_combined_tags(image):
# Preprocess image
image = preprocess(image).unsqueeze(0).to(DEVICE)
# Tokenize labels
all_text = tokenizer(type_labels + scene_labels + expression_labels + clothing_labels).to(DEVICE)
with torch.no_grad():
# Encode image and text
image_features = model.encode_image(image)
all_text_features = model.encode_text(all_text)
# Normalize features
image_features /= image_features.norm(dim=-1, keepdim=True)
all_text_features /= all_text_features.norm(dim=-1, keepdim=True)
# Calculate cosine similarities and apply softmax
# Using temperature parameter to control the "sharpness" of the distribution
temperature = 0.1 # Lower values make the distribution more peaked
cosine_similarities = image_features @ all_text_features.T
all_text_probs = torch.softmax(cosine_similarities / temperature, dim=-1)
# Convert to dictionaries
all_results = {label: float(all_text_probs[0][i]) for i, label in enumerate(type_labels + scene_labels + expression_labels + clothing_labels)}
return all_results
# Create Gradio interface
iface = gr.Blocks(title="NSFW Tagging with Finetuned CLIP")
with iface:
gr.Markdown("# NSFW Tagging with Finetuned CLIP")
gr.Markdown("Upload an image to analyze its content across multiple NSFW categories.")
gr.Markdown("Uses [woweenie/open-clip-vit-h-nsfw-finetune](https://huggingface.co/woweenie/open-clip-vit-h-nsfw-finetune) finetuned on NSFW images.")
gr.Markdown("Disclaimer: This model is not perfect and may make mistakes. Use at your own risk.")
with gr.Tabs():
with gr.Tab("Categorical Predictions"):
with gr.Row():
image_input2 = gr.Image(type="pil", label="Upload Image")
with gr.Row():
type_output = gr.Label(label="Predicted Type", num_top_classes=3)
scene_output = gr.Label(label="Predicted Scene", num_top_classes=10)
expression_output = gr.Label(label="Predicted Expression", num_top_classes=3)
clothing_output = gr.Label(label="Predicted Clothing", num_top_classes=5)
predict_btn2 = gr.Button("Analyze")
predict_btn2.click(
fn=process_image_separate_tags,
inputs=image_input2,
outputs=[type_output, scene_output, expression_output, clothing_output]
)
with gr.Tab("Combined Predictions"):
with gr.Row():
image_input1 = gr.Image(type="pil", label="Upload Image")
with gr.Row():
combined_output = gr.Label(label="Predicted Tags", num_top_classes=10)
predict_btn1 = gr.Button("Analyze")
predict_btn1.click(
fn=process_image_combined_tags,
inputs=image_input1,
outputs=combined_output
)
if __name__ == "__main__":
iface.launch()
|