Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from utils import ( | |
create_gif_from_video_file, | |
download_youtube_video, | |
get_num_total_frames, | |
) | |
from transformers import pipeline | |
from huggingface_hub import HfApi, ModelFilter | |
FRAME_SAMPLING_RATE = 4 | |
DEFAULT_MODEL = "facebook/timesformer-base-finetuned-k400" | |
VALID_VIDEOCLASSIFICATION_MODELS = [ | |
"MCG-NJU/videomae-large-finetuned-kinetics", | |
"facebook/timesformer-base-finetuned-k400", | |
"fcakyon/timesformer-large-finetuned-k400", | |
"MCG-NJU/videomae-base-finetuned-kinetics", | |
"facebook/timesformer-base-finetuned-k600", | |
"fcakyon/timesformer-large-finetuned-k600", | |
"facebook/timesformer-hr-finetuned-k400", | |
"facebook/timesformer-hr-finetuned-k600", | |
"facebook/timesformer-base-finetuned-ssv2", | |
"fcakyon/timesformer-large-finetuned-ssv2", | |
"facebook/timesformer-hr-finetuned-ssv2", | |
"MCG-NJU/videomae-base-finetuned-ssv2", | |
"MCG-NJU/videomae-base-short-finetuned-kinetics", | |
"MCG-NJU/videomae-base-short-ssv2", | |
"MCG-NJU/videomae-base-short-finetuned-ssv2", | |
"sayakpaul/videomae-base-finetuned-ucf101-subset", | |
"nateraw/videomae-base-finetuned-ucf101", | |
"MCG-NJU/videomae-base-ssv2", | |
"zahrav/videomae-base-finetuned-ucf101-subset", | |
] | |
pipe = pipeline( | |
task="video-classification", | |
model=DEFAULT_MODEL, | |
top_k=5, | |
frame_sampling_rate=FRAME_SAMPLING_RATE, | |
) | |
examples = [ | |
#["https://www.youtube.com/watch?v=huAJ9dC5lmI"], | |
["https://www.youtube.com/watch?v=wvcWt6u5HTg"], | |
["https://www.youtube.com/watch?v=-3kZSi5qjRM"], | |
["https://www.youtube.com/watch?v=-6usjfP8hys"], | |
["https://www.youtube.com/watch?v=BDHub0gBGtc"], | |
["https://www.youtube.com/watch?v=B9ea7YyCP6E"], | |
["https://www.youtube.com/watch?v=BBkpaeJBKmk"], | |
["https://www.youtube.com/watch?v=BBqU8Apee_g"], | |
["https://www.youtube.com/watch?v=B8OdMwVwyXc"], | |
["https://www.youtube.com/watch?v=I7cwq6_4QtM"], | |
["https://www.youtube.com/watch?v=Z0mJDXpNhYA"], | |
["https://www.youtube.com/watch?v=QkQQjFGnZlg"], | |
["https://www.youtube.com/watch?v=IQaoRUQif14"], | |
] | |
def get_video_model_names(): | |
filter = ModelFilter( | |
task='video-classification', | |
library='transformers', | |
) | |
api = HfApi() | |
video_models = list( | |
iter(api.list_models(filter=filter, sort="downloads", direction=-1)) | |
) | |
video_models = [video_model.id for video_model in video_models] | |
return video_models | |
def select_model(model_name): | |
global pipe | |
pipe = pipeline( | |
task="video-classification", | |
model=model_name, | |
top_k=5, | |
frame_sampling_rate=FRAME_SAMPLING_RATE, | |
) | |
def predict(youtube_url_or_file_path): | |
if youtube_url_or_file_path.startswith("http"): | |
video_path = download_youtube_video(youtube_url_or_file_path) | |
else: | |
video_path = youtube_url_or_file_path | |
# rearrange sampling rate based on video length and model input length | |
num_total_frames = get_num_total_frames(video_path) | |
num_model_input_frames = pipe.model.config.num_frames | |
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames: | |
frame_sampling_rate = num_total_frames // num_model_input_frames | |
else: | |
frame_sampling_rate = FRAME_SAMPLING_RATE | |
gif_path = create_gif_from_video_file( | |
video_path, frame_sampling_rate=frame_sampling_rate, save_path="video.gif" | |
) | |
# run inference | |
results = pipe(videos=video_path, frame_sampling_rate=frame_sampling_rate) | |
os.remove(video_path) | |
label_to_score = {result["label"]: result["score"] for result in results} | |
return label_to_score, gif_path | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("# **<p align='center'>Video Classification with 🤗 Transformers</p>**") | |
gr.Markdown( | |
""" | |
<p style='text-align: center'> | |
Perform video classification with <a href='https://huggingface.co/models?pipeline_tag=video-classification&library=transformers' target='_blank'>HuggingFace Transformers video models</a>. | |
<br> For zero-shot classification, you can use the <a href='https://huggingface.co/spaces/fcakyon/zero-shot-video-classification' target='_blank'>zero-shot classification demo</a>. | |
</p> | |
""" | |
) | |
gr.Markdown( | |
""" | |
<p style='text-align: center'> | |
Follow me for more! | |
<br> <a href='https://twitter.com/fcakyon' target='_blank'>twitter</a> | <a href='https://github.com/fcakyon' target='_blank'>github</a> | <a href='https://www.linkedin.com/in/fcakyon/' target='_blank'>linkedin</a> | <a href='https://fcakyon.medium.com/' target='_blank'>medium</a> | |
</p> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
model_names_dropdown = gr.Dropdown( | |
choices=VALID_VIDEOCLASSIFICATION_MODELS, | |
label="Model:", | |
show_label=True, | |
value=DEFAULT_MODEL, | |
) | |
model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown) | |
with gr.Tab(label="Youtube URL"): | |
gr.Markdown("### **Provide a Youtube video URL**") | |
youtube_url = gr.Textbox(label="Youtube URL:", show_label=True) | |
youtube_url_predict_btn = gr.Button(value="Predict") | |
with gr.Tab(label="Local File"): | |
gr.Markdown("### **Upload a video file**") | |
video_file = gr.Video(label="Video File:", show_label=True) | |
local_video_predict_btn = gr.Button(value="Predict") | |
with gr.Column(): | |
video_gif = gr.Image( | |
label="Input Clip", | |
show_label=True, | |
) | |
with gr.Column(): | |
predictions = gr.Label( | |
label="Predictions:", show_label=True, num_top_classes=5 | |
) | |
gr.Markdown("**Examples:**") | |
gr.Examples( | |
examples, | |
youtube_url, | |
[predictions, video_gif], | |
fn=predict, | |
cache_examples=True, | |
) | |
youtube_url_predict_btn.click( | |
predict, inputs=youtube_url, outputs=[predictions, video_gif] | |
) | |
local_video_predict_btn.click( | |
predict, inputs=video_file, outputs=[predictions, video_gif] | |
) | |
gr.Markdown( | |
""" | |
\n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a>. | |
<br> Powered by <a href='https://huggingface.co/models?pipeline_tag=video-classification&library=transformers' target='_blank'>HuggingFace Transformers video models</a> . | |
""" | |
) | |
app.launch() | |