Spaces:
Runtime error
Runtime error
File size: 9,834 Bytes
003d053 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import os
import sys
sys.path.insert(0, os.getcwd())
import ChatTTS
import re
import time
import io
from io import BytesIO
import pandas
import numpy as np
from tqdm import tqdm
import random
import os
import json
from utils import batch_split,normalize_zh
import torch
import soundfile as sf
import wave
from fastapi import FastAPI, Request, HTTPException, Response
from fastapi.responses import StreamingResponse, JSONResponse
from starlette.middleware.cors import CORSMiddleware #引入 CORS中间件模块
#设置允许访问的域名
origins = ["*"] #"*",即为所有。
from pydantic import BaseModel
import uvicorn
from typing import Generator
chat = ChatTTS.Chat()
def clear_cuda_cache():
"""
Clear CUDA cache
:return:
"""
torch.cuda.empty_cache()
def deterministic(seed=0):
"""
Set random seed for reproducibility
:param seed:
:return:
"""
# ref: https://github.com/Jackiexiao/ChatTTS-api-ui-docker/blob/main/api.py#L27
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class TTS_Request(BaseModel):
text: str = None
seed: int = 2581
speed: int = 3
media_type: str = "wav"
streaming: int = 0
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=origins, #设置允许的origins来源
allow_credentials=True,
allow_methods=["*"], # 设置允许跨域的http方法,比如 get、post、put等。
allow_headers=["*"]) #允许跨域的headers,可以用来鉴别来源等作用。
def cut5(inp):
# if not re.search(r'[^\w\s]', inp[-1]):
# inp += '。'
inp = inp.strip("\n")
punds = r'[,.;?!、,。?!;:…]'
items = re.split(f'({punds})', inp)
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
# 在句子不存在符号或句尾无符号的时候保证文本完整
if len(items)%2 == 1:
mergeitems.append(items[-1])
# opt = "\n".join(mergeitems)
return mergeitems
# from https://huggingface.co/spaces/coqui/voice-chat-with-mistral/blob/main/app.py
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
# This will create a wave header then append the frame input
# It should be first on a streaming wav file
# Other frames better should not have it (else you will hear some artifacts each chunk start)
wav_buf = BytesIO()
with wave.open(wav_buf, "wb") as vfout:
vfout.setnchannels(channels)
vfout.setsampwidth(sample_width)
vfout.setframerate(sample_rate)
vfout.writeframes(frame_input)
wav_buf.seek(0)
return wav_buf.read()
### modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files
def pack_ogg(io_buffer:BytesIO, data:np.ndarray, rate:int):
with sf.SoundFile(io_buffer, mode='w',samplerate=rate, channels=1, format='ogg') as audio_file:
audio_file.write(data)
return io_buffer
def pack_raw(io_buffer:BytesIO, data:np.ndarray, rate:int):
io_buffer.write(data.tobytes())
return io_buffer
def pack_wav(io_buffer:BytesIO, data:np.ndarray, rate:int):
io_buffer = BytesIO()
sf.write(io_buffer, data, rate, format='wav')
return io_buffer
def pack_aac(io_buffer:BytesIO, data:np.ndarray, rate:int):
process = subprocess.Popen([
'ffmpeg',
'-f', 's16le', # 输入16位有符号小端整数PCM
'-ar', str(rate), # 设置采样率
'-ac', '1', # 单声道
'-i', 'pipe:0', # 从管道读取输入
'-c:a', 'aac', # 音频编码器为AAC
'-b:a', '192k', # 比特率
'-vn', # 不包含视频
'-f', 'adts', # 输出AAC数据流格式
'pipe:1' # 将输出写入管道
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, _ = process.communicate(input=data.tobytes())
io_buffer.write(out)
return io_buffer
def pack_audio(io_buffer:BytesIO, data:np.ndarray, rate:int, media_type:str):
if media_type == "ogg":
io_buffer = pack_ogg(io_buffer, data, rate)
elif media_type == "aac":
io_buffer = pack_aac(io_buffer, data, rate)
elif media_type == "wav":
io_buffer = pack_wav(io_buffer, data, rate)
else:
io_buffer = pack_raw(io_buffer, data, rate)
io_buffer.seek(0)
return io_buffer
def generate_tts_audio(text_file,seed=2581,speed=1, oral=0, laugh=0, bk=4, min_length=80, batch_size=5, temperature=0.01, top_P=0.7,
top_K=20,streaming=0,cur_tqdm=None):
from utils import combine_audio, save_audio, batch_split
from utils import split_text, replace_tokens, restore_tokens
if seed in [0, -1, None]:
seed = random.randint(1, 9999)
content = text_file
# texts = split_text(content, min_length=min_length)
# if oral < 0 or oral > 9 or laugh < 0 or laugh > 2 or bk < 0 or bk > 7:
# raise ValueError("oral_(0-9), laugh_(0-2), break_(0-7) out of range")
# refine_text_prompt = f"[oral_{oral}][laugh_{laugh}][break_{bk}]"
# 将 [uv_break] [laugh] 替换为 _uv_break_ _laugh_ 处理后再还原
content = replace_tokens(content)
texts = split_text(content, min_length=min_length)
for i, text in enumerate(texts):
texts[i] = restore_tokens(text)
if oral < 0 or oral > 9 or laugh < 0 or laugh > 2 or bk < 0 or bk > 7:
raise ValueError("oral_(0-9), laugh_(0-2), break_(0-7) out of range")
refine_text_prompt = f"[oral_{oral}][laugh_{laugh}][break_{bk}]"
deterministic(seed)
rnd_spk_emb = chat.sample_random_speaker()
params_infer_code = {
'spk_emb': rnd_spk_emb,
'prompt': f'[speed_{speed}]',
'top_P': top_P,
'top_K': top_K,
'temperature': temperature
}
params_refine_text = {
'prompt': refine_text_prompt,
'top_P': top_P,
'top_K': top_K,
'temperature': temperature
}
if not cur_tqdm:
cur_tqdm = tqdm
start_time = time.time()
if not streaming:
all_wavs = []
for batch in cur_tqdm(batch_split(texts, batch_size), desc=f"Inferring audio for seed={seed}"):
print(batch)
wavs = chat.infer(batch, params_infer_code=params_infer_code, params_refine_text=params_refine_text,use_decoder=True, skip_refine_text=True)
audio_data = wavs[0][0]
audio_data = audio_data / np.max(np.abs(audio_data))
all_wavs.append(audio_data)
# all_wavs.extend(wavs)
clear_cuda_cache()
audio = (np.concatenate(all_wavs) * 32768).astype(
np.int16
)
# end_time = time.time()
# elapsed_time = end_time - start_time
# print(f"Saving audio for seed {seed}, took {elapsed_time:.2f}s")
yield audio
else:
print("流式生成")
texts = [normalize_zh(_) for _ in content.split('\n') if _.strip()]
for text in texts:
wavs_gen = chat.infer(text, params_infer_code=params_infer_code, params_refine_text=params_refine_text,use_decoder=True, skip_refine_text=True,stream=True)
for gen in wavs_gen:
wavs = [np.array([[]])]
wavs[0] = np.hstack([wavs[0], np.array(gen[0])])
audio_data = wavs[0][0]
audio_data = audio_data / np.max(np.abs(audio_data))
yield (audio_data * 32767).astype(np.int16)
# clear_cuda_cache()
async def tts_handle(req:dict):
media_type = req["media_type"]
print(req["streaming"])
print(req["media_type"])
if not req["streaming"]:
audio_data = next(generate_tts_audio(req["text"],req["seed"]))
# print(audio_data)
sr = 24000
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
return Response(audio_data, media_type=f"audio/{media_type}")
# return FileResponse(f"./{audio_data}", media_type="audio/wav")
else:
tts_generator = generate_tts_audio(req["text"],req["seed"],streaming=1)
sr = 24000
def streaming_generator(tts_generator:Generator, media_type:str):
if media_type == "wav":
yield wave_header_chunk()
media_type = "raw"
for chunk in tts_generator:
print(chunk)
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
return StreamingResponse(streaming_generator(tts_generator, media_type), media_type=f"audio/{media_type}")
@app.get("/")
async def tts_get(text: str = None,media_type:str = "wav",seed:int = 2581,streaming:int = 0):
req = {
"text": text,
"media_type": media_type,
"seed": seed,
"streaming": streaming,
}
return await tts_handle(req)
@app.get("/speakers")
def speakers_endpoint():
return JSONResponse([{"name":"default","vid":1}], status_code=200)
@app.get("/speakers_list")
def speakerlist_endpoint():
return JSONResponse(["female_calm","female","male"], status_code=200)
@app.post("/")
async def tts_post_endpoint(request: TTS_Request):
req = request.dict()
return await tts_handle(req)
@app.post("/tts_to_audio/")
async def tts_to_audio(request: TTS_Request):
req = request.dict()
from config import llama_seed
req["seed"] = llama_seed
return await tts_handle(req)
if __name__ == "__main__":
chat.load_models(source="local", local_path="models")
# chat = load_chat_tts_model(source="local", local_path="models")
uvicorn.run(app,host='0.0.0.0',port=9880,workers=1)
|